搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响

张斌 赵健 赵增秀

引用本文:
Citation:

基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响

张斌, 赵健, 赵增秀

Multiconfiguration time-dependent Hartree-Fock treatment of electron correlation in strong-field ionization of H2 molecules

Zhang Bin, Zhao Jian, Zhao Zeng-Xiu
PDF
导出引用
  • 发展了三维的处理双原子分子非微扰电子动力学的多组态含时Hartree-Fock方法,并利用该方法研究了电子关联对于H2分子强场电离概率的影响.该方法采用能够精确处理双中心库仑势的椭球坐标系,以及减小双电子积分计算量的有限元-离散变量基函数方法.利用多组态含时Hartree-Fock方法计算了H2分子随分子取向角度变化的XUV光电离结果,并通过与单组态结果的对比研究了电子关联对于单电离和双电离概率的不同影响.研究表明,电子关联对于单电离过程影响很小,而在双电离过程中则发挥了重要作用,导致了电离概率的减小.该方法为进一步研究强场物理过程中的电子关联效应奠定了基础.
    Electron correlation plays an important role in the multielectron interactions of many physical and chemical processes.The investigation of correlation effects in the non-perturbative electronic dynamics (e.g.non-sequential double ionization) when atoms and molecules are subjected to strong laser fields requires non-perturbative theoretical treatments. The direct numerical integration of the time-dependent Schrödinger equation successfully explains many experimental results,but it is computationally prohibitive for systems with more than two electrons.There is clearly a need for a theory which can treat correlation dynamics self-consistently in strong time-dependent electric fields.In this paper we develop a three-dimensional multiconfiguration time-dependent Hartree-Fock method,which can be applied to the non-perturbative electronic dynamics for diatomic molecules,and it can also investigate the effect of electron correlation in strong-field ionization of H2 molecules.This method adopts the prolate spheroidal coordinates (which can treat the two-center Coulomb potential accurately) and the finite-element method together with discrete-variable representation (which lowers the calculation burden from two-electron integrations).For the temporal propagation,we use the efficient short iterative Lanczos algorithm for the equation which governs the configuration expansion coefficients,while an eight-order Runge-Kutta (RK) method and an Bulirsch-Stoer (BS) extrapolation method,both with adaptive precision controls,are implemented to solve the nonlinear orbital equation.While both methods yield correct results,the BS method displays a better stability in the realtime propagation,while the RK method demands less computation.The alignment-dependent ionization probabilities of H2 molecules in intense extreme ultraviolet pulses are calculated.Comparisons between multi-configuration and single-configuration results show that electron correlation has little effect on the single ionization process,but it plays an important role in double ionization,leading to the decrease in the ionization probability.The double ionization probability from the single-configuration space 1σ is about three times larger that from 4σ1π.The ionization probability increases monotonically when the alignment angle increases from 0° to 90°, yielding a ratio of 2.6(1.5) between 90° and 0° for the double (single) ionization process.This method presents the basis for the future study of electron correlation in strong-field processes.
      通信作者: 张斌, zhang_bin@nudt.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB922203)、国家自然科学基金(批准号:11374366)、国防科技大学优秀研究生创新资助(批准号:B110204)和湖南省研究生创新资助(批准号:CX2011B010)资助的课题.
      Corresponding author: Zhang Bin, zhang_bin@nudt.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB922203), the National Natural Science Foundation of China (Grant No. 11374366), the Innovation Foundation of NUDT, China (Grant No. B110204), and the Hunan Provincial Innovation Foundation For Postgraduate, China (Grant No. CX2011B010).
    [1]

    Xu G X, Li L M, Wang D M, Chen M B 2009 Quantum Chemistry:Fundamental Principle and Ab-initio Calculation Method (2nd Ed.) (Vol. 1) (Beijing:Science Press) pp869-874 (in Chinese)[徐光宪, 黎乐民, 王德民, 陈敏伯 2009 量子化学——基本原理和从头计算法(下) (第二版)(北京:科学出版社) 第869–874页]

    [2]

    Becker W, Liu X J, Ho P J, Eberly J H 2012 Rev. Mod. Phys. 84 1011

    [3]

    Zhao L, Zhang Q, Dong J W, L H, Xu H F 2016 Acta Phys. Sin. 65 223201 (in Chinese)[赵磊, 张琦, 董敬伟, 吕航, 徐海峰 2016 65 223201]

    [4]

    Jin F C, Wang B B 2016 Acta Phys. Sin. 65 224205 (in Chinese)[金发成, 王兵兵 2016 65 224205]

    [5]

    Hu S X 2013 Phys. Rev. Lett. 111 123003

    [6]

    Ye D F, Liu X, Liu J 2008 Phys. Rev. Lett. 101 233003

    [7]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545

    [8]

    Posthumus J H 2004 Rep. Progr. Phys. 67 623

    [9]

    Xiao X R, Wang M X, Li M, Geng J W, Liu Y Q, Peng L Y 2016 Acta Phys. Sin. 65 220203 (in Chinese)[肖相如, 王慕雪, 黎敏, 耿基伟, 刘运全, 彭良友 2016 65 220203]

    [10]

    Zhang Z, Peng L Y, Xu M H, Starace A F, Morishita T, Gong Q H 2011 Phys. Rev. A 84 043409

    [11]

    Guan X, Bartschat K, Schneider B I 2011 Phys. Rev. A 83 043403

    [12]

    Stapelfeldt H 2003 Rev. Mod. Phys. 75 543

    [13]

    Kulander K 1987 Phys. Rev. A 36 2726

    [14]

    Marques M A L, Ullrich C A, Nogueira F, Rubio A, Burke K, Gross E K U 2006 Time-Dependent Density Functional Theory (Heidelberg, Berlin:Springer) pp1-13

    [15]

    Hochstuhl D, Bonitz M 2012 Phys. Rev. A 86 053424

    [16]

    Zanghellini J, Kitzler M, Fabian C, Brabec T, Scrinzi A 2003 Laser Phys. 13 1064

    [17]

    Kitzler M, Zanghellini J, Jungreuthmayer C, Smits M, Scrinzi, Brabec T 2004 Phys. Rev. A 70 041401

    [18]

    Caillat J, Zanghellini J, Kitzler M, Koch O, Kreuzer W, Scrinzi A 2005 Phys. Rev. A 71 012712

    [19]

    Kato T, Kono H 2004 Chem. Phys. Lett. 392 533

    [20]

    Hochstuhl D, Bonitz M 2011 J. Chem. Phys. 134 084106

    [21]

    Haxton D J, Lawler K V, McCurdy C W 2011 Phys. Rev. A 83 063416

    [22]

    Liao C T, Li X, Haxton D J, Rescigno T N, Lucchese R R, McCurdy C W, Sandhu A 2017 Phys. Rev. A 95 043427

    [23]

    Zhang B, Yuan J M, Zhao Z X 2015 Comput. Phys. Commun. 194 84

    [24]

    Lamb W E, Schlicher R R, Scully M O 1987 Phys. Rev. A 36 2763

    [25]

    Abramowitz M, Stegun I A 1972 Handbook of Mathmatical Functions (Washington:Dover) p752

    [26]

    Rescigno T, McCurdy C 2011 Phys. Rev. A 62 032706

    [27]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2007 Numerical Recipes (3rd Ed.) (New York:Cambridge University Press) pp179-193, 899-928

    [28]

    Park T J, Light J C 1986 J. Chem. Phys. 85 5870

    [29]

    Weinhold F, Landis C R 2001 Chem. Educ. Res. Pract. 2 91

    [30]

    Zhang B, Yuan J M, Zhao Z X 2013 Phys. Rev. Lett. 111 163001

    [31]

    Zhang B, Yuan J M, Zhao Z X 2012 Phys. Rev. A 85 033421

  • [1]

    Xu G X, Li L M, Wang D M, Chen M B 2009 Quantum Chemistry:Fundamental Principle and Ab-initio Calculation Method (2nd Ed.) (Vol. 1) (Beijing:Science Press) pp869-874 (in Chinese)[徐光宪, 黎乐民, 王德民, 陈敏伯 2009 量子化学——基本原理和从头计算法(下) (第二版)(北京:科学出版社) 第869–874页]

    [2]

    Becker W, Liu X J, Ho P J, Eberly J H 2012 Rev. Mod. Phys. 84 1011

    [3]

    Zhao L, Zhang Q, Dong J W, L H, Xu H F 2016 Acta Phys. Sin. 65 223201 (in Chinese)[赵磊, 张琦, 董敬伟, 吕航, 徐海峰 2016 65 223201]

    [4]

    Jin F C, Wang B B 2016 Acta Phys. Sin. 65 224205 (in Chinese)[金发成, 王兵兵 2016 65 224205]

    [5]

    Hu S X 2013 Phys. Rev. Lett. 111 123003

    [6]

    Ye D F, Liu X, Liu J 2008 Phys. Rev. Lett. 101 233003

    [7]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545

    [8]

    Posthumus J H 2004 Rep. Progr. Phys. 67 623

    [9]

    Xiao X R, Wang M X, Li M, Geng J W, Liu Y Q, Peng L Y 2016 Acta Phys. Sin. 65 220203 (in Chinese)[肖相如, 王慕雪, 黎敏, 耿基伟, 刘运全, 彭良友 2016 65 220203]

    [10]

    Zhang Z, Peng L Y, Xu M H, Starace A F, Morishita T, Gong Q H 2011 Phys. Rev. A 84 043409

    [11]

    Guan X, Bartschat K, Schneider B I 2011 Phys. Rev. A 83 043403

    [12]

    Stapelfeldt H 2003 Rev. Mod. Phys. 75 543

    [13]

    Kulander K 1987 Phys. Rev. A 36 2726

    [14]

    Marques M A L, Ullrich C A, Nogueira F, Rubio A, Burke K, Gross E K U 2006 Time-Dependent Density Functional Theory (Heidelberg, Berlin:Springer) pp1-13

    [15]

    Hochstuhl D, Bonitz M 2012 Phys. Rev. A 86 053424

    [16]

    Zanghellini J, Kitzler M, Fabian C, Brabec T, Scrinzi A 2003 Laser Phys. 13 1064

    [17]

    Kitzler M, Zanghellini J, Jungreuthmayer C, Smits M, Scrinzi, Brabec T 2004 Phys. Rev. A 70 041401

    [18]

    Caillat J, Zanghellini J, Kitzler M, Koch O, Kreuzer W, Scrinzi A 2005 Phys. Rev. A 71 012712

    [19]

    Kato T, Kono H 2004 Chem. Phys. Lett. 392 533

    [20]

    Hochstuhl D, Bonitz M 2011 J. Chem. Phys. 134 084106

    [21]

    Haxton D J, Lawler K V, McCurdy C W 2011 Phys. Rev. A 83 063416

    [22]

    Liao C T, Li X, Haxton D J, Rescigno T N, Lucchese R R, McCurdy C W, Sandhu A 2017 Phys. Rev. A 95 043427

    [23]

    Zhang B, Yuan J M, Zhao Z X 2015 Comput. Phys. Commun. 194 84

    [24]

    Lamb W E, Schlicher R R, Scully M O 1987 Phys. Rev. A 36 2763

    [25]

    Abramowitz M, Stegun I A 1972 Handbook of Mathmatical Functions (Washington:Dover) p752

    [26]

    Rescigno T, McCurdy C 2011 Phys. Rev. A 62 032706

    [27]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2007 Numerical Recipes (3rd Ed.) (New York:Cambridge University Press) pp179-193, 899-928

    [28]

    Park T J, Light J C 1986 J. Chem. Phys. 85 5870

    [29]

    Weinhold F, Landis C R 2001 Chem. Educ. Res. Pract. 2 91

    [30]

    Zhang B, Yuan J M, Zhao Z X 2013 Phys. Rev. Lett. 111 163001

    [31]

    Zhang B, Yuan J M, Zhao Z X 2012 Phys. Rev. A 85 033421

  • [1] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离.  , 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [2] 刘义俊, 陈以威, 朱雨剑, 黄焱, 安冬冬, 李庆鑫, 甘祺康, 朱旺, 宋珺威, 王开元, 魏凌楠, 宗其军, 刘硕涵, 李世伟, 刘芝, 张琪, 徐瑛海, 曹新宇, 杨奥, 王浩林, 杨冰, Andy Shen, 于葛亮, 王雷. 转角双层-双层石墨烯中同位旋极化的C = 4陈绝缘态.  , 2023, 72(14): 147303. doi: 10.7498/aps.72.20230497
    [3] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联.  , 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [4] 李盈傧, 张可, 陈红梅, 康帅杰, 李整法, 程建国, 吴银梦, 翟春洋, 汤清彬, 许景焜, 余本海. 空间非均匀激光场驱动的原子非次序双电离.  , 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [5] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖.  , 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [6] 宁辉, 王凯程, 王少萌, 宫玉彬. 强场太赫兹波作用下氢气分子振动动力学研究.  , 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [7] 唐富明, 刘凯, 杨溢, 屠倩, 王凤, 王哲, 廖青. 基于图形处理器加速数值求解三维含时薛定谔方程.  , 2020, 69(23): 234202. doi: 10.7498/aps.69.20200700
    [8] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖.  , 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [9] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究.  , 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [10] 吴绍全, 方栋开, 赵国平. 电子关联效应对平行双量子点系统磁输运性质的影响.  , 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [11] 何曼丽, 王晓, 张明, 王黎, 宋蕊. 低温等离子体中H2(D2和T2)的振动分布.  , 2014, 63(12): 125201. doi: 10.7498/aps.63.125201
    [12] 刘玉柱, Gerber Thomas, Knopp Gregor. 利用强场多光子电离技术实现对多原子分子离子振动量子态的光学操控.  , 2014, 63(24): 244208. doi: 10.7498/aps.63.244208
    [13] 李文亮, 张季, 姚洪斌. 三种不同表象下多组态含时Hartree Fock理论实现方案.  , 2013, 62(12): 123202. doi: 10.7498/aps.62.123202
    [14] 何曼丽, 王晓, 高思峰. 电子与氢及其同位素分子碰撞的非解离性电离截面研究.  , 2012, 61(4): 043404. doi: 10.7498/aps.61.043404
    [15] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖.  , 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [16] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离.  , 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [17] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离.  , 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [18] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算.  , 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [19] 傅荣堂, 孙鑫. 氢链中的Peierls机理(Ⅰ)——Hartree-Fock解的二聚化.  , 1992, 41(2): 213-220. doi: 10.7498/aps.41.213
    [20] 冯伟国, 孙鑫. 金属表面的电子关联函数(Ⅰ)——Hartree-Fock近似.  , 1984, 33(12): 1719-1727. doi: 10.7498/aps.33.1719
计量
  • 文章访问数:  6916
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-20
  • 修回日期:  2018-03-10
  • 刊出日期:  2019-05-20

/

返回文章
返回
Baidu
map