Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Accurate calculation of hyperfine-induced 5d6s 3D1,3→6s2 1S0 E2 transitions and hyperfine constants of ytterbium atoms

Zhao Guo-Dong Cao Jin Liang Ting Feng Min Lu Ben-Quan Chang Hong

Accurate calculation of hyperfine-induced 5d6s 3D1,3→6s2 1S0 E2 transitions and hyperfine constants of ytterbium atoms

Zhao Guo-Dong, Cao Jin, Liang Ting, Feng Min, Lu Ben-Quan, Chang Hong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The parity violation effects via the 5d6s3D16s21S0 transition have been extensively investigated in ytterbium atoms. However, the M1 transition between the excitation state 5d6s3D1 and the ground state 6s21S0, as well as the hyperfine-induced E2 transition, significantly affects the detection of parity violation signal. Therefore, it is imperative to obtain the accurate transition probabilities for the M1 and hyperfine-induced E2 transitions between the excitation state 5d6s3D1 and the ground state 6s21S0. In this work, we use the multi-configuration Dirac-Hartree-Fock theory to precisely calculate the transition probabilities for the 5d6s3D16s21S0 M1 and hyperfine-induced 5d6s3D1,36s21S0 E2 transitions. We extensively analyze the influences of electronic correlation effects on the transition probabilities according to our calculations. Furthermore, we analyze the influences of different perturbing states and various hyperfine interactions on the transition probabilities. The calculated hyperfine constants of the e 3D1,2,3 and 1D2 states accord well with experimental measurements, validating the rationality of our computational model. By combining experimentally measured hyperfine constants with the theoretically derived electric field gradient of the extra nuclear electrons at the nucleus, we reevaluate the nuclear quadrupole moment of the 173Yb nucleus as Q=2.89(5)b, showing that our result is in excellent agreement with the presently recommended value.
      PACS:
      Corresponding author: Lu Ben-Quan, lubenquan@ntsc.ac.cn ; Chang Hong, changhong@ntsc.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB35010202).
    [1]

    Bouchiat M, Bouchiat C 1974 J. Phys. 35 899Google Scholar

    [2]

    Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [3]

    Roberts B, Dzuba V, Flambaum V 2015 Annu. Rev. Nucl. Part. Sci. 65 63Google Scholar

    [4]

    DeMille D 1995 Phys. Rev. Lett. 74 4165Google Scholar

    [5]

    Tsigutkin K, Dounas Frazer D, Family A, Stalnaker J E, Yashchuk V V, Budker D 2009 Phys. Rev. Lett. 103 071601Google Scholar

    [6]

    Antypas D, Fabricant A, Stalnaker J E, Tsigutkin K, Flambaum V, Budker D 2019 Nat. Phys. 15 120Google Scholar

    [7]

    Tsigutkin K, Dounas Frazer D, Family A, Stalnaker J E, Yashchuk V V, Budker D 2010 Phys. Rev. A 81 032114Google Scholar

    [8]

    Dzuba V, Flambaum V 2011 Phys. Rev. A 83 042514Google Scholar

    [9]

    Stalnaker J, Budker D, DeMille D, Freedman S, Yashchuk V V 2002 Phys. Rev. A 66 031403Google Scholar

    [10]

    Sur C, Chaudhuri R K 2007 Phys. Rev. A 76 012509Google Scholar

    [11]

    Kozlov M, Dzuba V, Flambaum V 2019 Phys. Rev. A 99 012516Google Scholar

    [12]

    Stone N 2016 At. Data Nucl. Data Tables 111–112 1Google Scholar

    [13]

    Schwartz C 1955 Phys. Rev. 97 380Google Scholar

    [14]

    Racah G 1942 Phys. Rev. 62 438Google Scholar

    [15]

    Andersson M, Jönsson P 2008 Comput. Phys. Commun. 178 156Google Scholar

    [16]

    Radzig A A, Smirnov B M 2012 Reference Data on Atoms, Molecules, and Ions (Berlin: Springer) p99

    [17]

    Lu B, Lu X, Wang T, Chang H 2022 J. Phys. B: At. Mol. Phys. 55 205002Google Scholar

    [18]

    Bieroń J, Pyykkö P, Sundholm D, Kellö V, Sadlej A J 2001 Phys. Rev. A 64 052507Google Scholar

    [19]

    Li J, Godefroid M, Wang J 2016 J. Phys. B: At. Mol. Phys. 49 115002Google Scholar

    [20]

    Hertel I V, Schulz C P 2014 Atoms, Molecules and Optical Physics (Berlin: Springer) p212

    [21]

    Johnson W R 2007 Atomic Structure Theory (Berlin: Springer) p181

    [22]

    Andersson M, Yao K, Hutton R, Zou Y, Chen C, Brage T 2008 Phys. Rev. A 77 042509Google Scholar

    [23]

    Li W, Grumer J, Brage T, Jönsson P 2020 Comput. Phys. Commun. 253 107211Google Scholar

    [24]

    Lu X, Guo F, Wang Y, Feng M, Liang T, Lu B, Chang H 2023 Phys. Rev. A 108 012820Google Scholar

    [25]

    Johnson W 2010 Can. J. Phys. 89 429Google Scholar

    [26]

    Grumer J, Brage T, Andersson M, Li J, Jönsson P, Li W, Yang Y, Hutton R, Zou Y 2014 Phys. Scr. 89 114002Google Scholar

    [27]

    Fischer C F, Brage T, Jönsson P 2022 Computational Atomic Structure: an MCHF Approach (New York: Routledge) p217

    [28]

    Li J, Jönsson P, Godefroid M, Dong C, Gaigalas G 2012 Phys. Rev. A 86 052523Google Scholar

    [29]

    Jönsson P 1993 Phys. Scr. 48 678Google Scholar

    [30]

    Jönsson P, Gaigalas G, Fischer C F, Bieroń J, Grant I P, Brage T, Ekman J, Godefroid M, Grumer J, Li J 2023 Atoms 11 68Google Scholar

    [31]

    Olsen J, Roos B O, Jorgensen P, Jensen H 1988 J. Chem. Phys. 89 2185Google Scholar

    [32]

    Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W, Li J, Brage T, Grant I P, Bieroń J, Fischer C F 2023 Atoms 11 7Google Scholar

    [33]

    Jönsson P, He X, Fischer C F, Grant I 2007 Comput. Phys. Commun. 177 597Google Scholar

    [34]

    Fischer C F, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184Google Scholar

    [35]

    Kramida A, Ralchenko Y, Reader J 2023 NIST Atomic Spectra Database (Version 5.11) https://physics.nist.gov/pml/atomic-spectra-database

    [36]

    Bowers C, Budker D, Freedman S, Gwinner G, Stalnaker J, DeMille D 1999 Phys. Rev. A 59 3513Google Scholar

    [37]

    Beloy K, Sherman J A, Lemke N D, Hinkley N, Oates C W, Ludlow A D 2012 Phys. Rev. A 86 051404Google Scholar

    [38]

    Ai D, Jin T, Zhang T, Luo L, Liu L, Zhou M, Xu X 2023 Phys. Rev. A 107 063107Google Scholar

    [39]

    Kronfeldt H D 1998 Phys. Scr. 1998 5Google Scholar

    [40]

    Porsev S, Rakhlina Y G, Kozlov M 1999 J. Phys. B: At. Mol. Phys. 32 1113Google Scholar

    [41]

    Holmgren L 1975 Phys. Scr. 12 119Google Scholar

    [42]

    Zhang T, Xie L, Li J, Lu Z 2017 Phys. Rev. A 96 012514Google Scholar

    [43]

    Bieroń J, Fischer C F, Jönsson P, Pyykkö P 2008 J. Phys. B: At. Mol. Phys. 41 115002Google Scholar

    [44]

    Singh A K, Angom D, Natarajan V 2013 Phys. Rev. A 87 012512Google Scholar

    [45]

    Zehnder A, Boehm F, Dey W, Engfer R, Walter H, Vuilleumier J 1975 Nucl. Phys. A 254 315Google Scholar

    [46]

    Cheng K, Chen M, Johnson W 2008 Phys. Rev. A 77 052504Google Scholar

  • 图 1  5d6s 3D16s2 1S0 M1跃迁及5d6s 1,3D26s2 1S0 E2跃迁的跃迁概率随虚轨道扩展的变化

    Figure 1.  Transition rates for 5d6s 3D16s2 1S0 M1 transition and 5d6s 1,3D26s2 1S0 E2 transition as a function of virtual orbital expansion.

    表 1  不同计算模型下打开的光谱轨道(active orbitals, AO)、虚轨道(virtual orbitals, VO) 以及模型产生的组态空间内总的组态个数(number of configuration state wavefunctions, NCFs). J=0 表示1S0 态, J=1,3 表示3D1,3 态, 而J=2对应3D21D2

    Table 1.  Active orbitals (AO), virtual orbitals (VO) opened under different calculation models, and NCFs is the total number of the configurations in the configuration space. J=0 represents 1S0 state, J=1,3 represents 3D1,3 states, and the J=2 corresponds to the 3D2 and 1D2 states, respectively.

    Models AO VO NCFs
    J=0 J=1 J=2 J=3
    DHF 1 1 2 1
    VV-1 {5d6s;6s2} {7s,6p,6d,5f,5g} 15 16 35 24
    C5V-2 {5s25p65d6s;5s25p66s2} {8s,7p,7d,6f,6g,6h} 336 1954 4361 3213
    C4V-3 {4s24p64d104f145s25p65d6s;4s24p64d104f145s25p66s2} {9s,8p,8d,7f,7g} 2896 20054 49368 37668
    C4V-4 {4s24p64d104f145s25p65d6s;4s24p64d104f145s25p66s2} {10s,9p,9d,8f,8g,8h} 5058 35649 88596 68104
    C4V-5 {4s24p64d104f145s25p65d6s;4s24p64d104f145s25p66s2} {11s,10p,10d,9f,9g,9h} 7822 55699 139251 107472
    C4V-6 {4s24p64d104f145s25p65d6s;4s24p64d104f145s25p66s2} {12s,11p,11d,10f,10g,9h} 10681 76208 190245 146319
    C4V-7 {4s24p64d104f145s25p65d6s;4s24p64d104f145s25p66s2} {13s,12p,12d,11f,10g,9h} 13213 93967 232975 177889
    CC5-7 {5s25p65d6s;5s25p6s2} {13s,12p,12d,11f,10g,9h} 154602 435843 643878 750192
    MR-3 {5s25p6p2;5s25p25d2;5s25p46s26d7d {9s,8p,8d,7f,7g,7h} 754484 2123833 3122817 3614260
    5s25p6s7s;5s25p66d7s;5s25p45d6s26d;
    5s25p55d6s6p;5s25p65f6p;5s25p66s6d}
    DownLoad: CSV

    表 2  不同计算模型下5d6s 3D16s2 1S0 M1跃迁的激发能ΔE(cm1), RME (a.u.)和跃迁概率R(s1). 方括号中的值表示以10为底的指数, 圆括号内的值表示误差

    Table 2.  Excitation energy ΔE (in cm1), transition probability R (in s1), and RME (in a.u.) for the 5d6s 3D16s2 1S0 M1 transition under various computational models. The values in brackets represent exponents with a base of 10, and values in parentheses indicate errors.

    Models E RME R
    DHF 21063.62 1.83[–6] 1.134[–9]
    VV-1 24989.1 2.69[–5] 4.059[–7]
    C4V-7 22195.61 1.61[–4] 1.019[–5]
    CC5-7 22987.31 1.16[–4] 5.887[–6]
    MR-3 24430.65 1.47[–4] 1.137[–5]
    Breit+QED 24301.85 1.45[–4] 1.088[–5]
    Sur等[10] 1.34[–4]
    Expt.[9] 1.33(20)[–4]
    NIST[35] 24489.10
    DownLoad: CSV

    表 3  5d6s 1,3D26s2 1S0 E2 跃迁的激发能ΔE(cm1), RME(a.u.) 和跃迁概率R(s1)在不同计算模型下的结果. V表示速度规范, L表示长度规范

    Table 3.  Excitation energy ΔE (in cm1), RME (in a.u.), and transition probability R (in s1) for the 5d6s 1,3D26s2 1S0 E2 transition under various computational models. “V” denotes the velocity gauge, and “L” represents the length gauge.

    3D21S0 1D21S0
    Models ΔE RMEL RMEV RL RV ΔE RMEL RMEV RL RV
    DHF 21114.02 0.05 0.05 0.001 0.001 28822.95 15.05 13.59 403.87 329.46
    VV-1 25010.57 2.09 2.00 3.85 3.51 26254.24 15.26 14.84 238.18 225.08
    C4V-7 22406.02 1.18 1.12 0.71 0.64 26208.26 11.67 11.26 150.96 140.41
    CC5-7 23171.20 0.86 0.85 0.45 0.43 28126.76 13.55 12.75 289.61 256.70
    MR-3 24685.75 1.21 1.15 1.20 1.10 28313.29 12.63 12.84 260.01 232.25
    Breit+QED 24553.44 1.18 1.13 1.11 1.02 28206.64 12.61 11.94 254.33 228.31
    Bowers等[36] 1.12(4)
    Expt.[36] 1.45(7)
    NIST[35] 24751.95 27677.67
    DownLoad: CSV

    表 4  5d6s 3D1,2,3态与1D2态的磁偶极超精细常数A (MHz)和电四极超精细常数B (MHz)

    Table 4.  Magnetic dipole hyperfine constant A (in MHz) and electric quadrupole hyperfine constant B (in MHz) for the 5d6s 3D1,2,3 and 1D2 states.

    171Yb 173Yb Ref.
    A A B
    3D1 Expt. 2040(2) 562.8(5) 337(2) [36]
    2047(47) [37]
    2032.67(17) [38]
    563(1) 335(1) [39]
    Theory 2349 648 249 [11]
    596 290 [40]
    597 [41]
    2119.3 583.79 338.46 This work
    3D2 Expt. 1315(4) 363.4(10) 487(5) [36]
    362(2) 482(22) [39]
    Theory 1354 373 387 [11]
    351 440 [40]
    765 [41]
    1314.62 362.13 491.39 This work
    3D3 Expt. 430(1) 909(29) [39]
    Theory 420 728 [40]
    477 [41]
    1626.97 448.17 836.5 This work
    1D2 Expt. 100(18) 1115(89) [39]
    Theory 131 1086 [40]
    465 [41]
    313.87 86.46 1053.44 This work
    DownLoad: CSV

    表 5  不同模型下的EFG(a.u.), 以及重新评估后的173Yb原子核电四极矩Q(b)

    Table 5.  The EFG (in a.u.) calculated under different models, along with the reassessment of the nuclear electric quadrupole moment Q (in b) for 173Yb.

    Models 3D1 3D2 3D3
    EFG Q EFG Q EFG Q
    DHF 0.23 6.09 0.32 6.47 0.55 7.07
    C4V-7 0.52 2.75 0.77 2.69 1.29 2.99
    CC5-7 0.43 3.26 0.63 3.27 1.10 3.52
    MR-3 0.51 2.79 0.74 2.77 1.27 3.04
    DownLoad: CSV

    表 6  171Yb173Yb原子的超精细诱导5d6s 3D1,3IF6s2 1S0 E2跃迁的混合系数(a.u.)

    Table 6.  Mixing coefficients (in a.u.) for the hyperfine-induced 5d6s 3D1,3IF6s2 1S0 E2 transition in 171Yb and 173Yb.

    (3D2,3D1) (1D2,3D1)
    F εA1 εB1 ε1 εA2 εB2 ε2
    171Yb 3/2 1.54[4] 0 1.54[4] 7.1[6] 0 7.1[6]
    7/2 7.36[5] 5.47[6] 7.91[5] 3.39[6] 4.04[8] 3.43[6]
    173Yb 5/2 7.17[5] 3.99[6] 6.77[5] 3.30[6] 2.95[8] 3.27[6]
    3/2 5.03[5] 7.47[6] 4.28[5] 2.31[6] 5.53[8] 2.26[6]
    (3D2,3D3) (1D2,3D3)
    F εA1 εB1 ε1 εA2 εB2 ε2
    171Yb 5/2 5.28[5] 0 5.28[5] –1.37[5] 0 1.37[5]
    9/2 2.35[5] 2.56[6] 2.61[5] 6.13[6] 3.78[8] 6.17[6]
    7/2 2.54[5] 3.46[7] 2.51[5] 6.61[6] 5.1[9] 6.61[6]
    173Yb 5/2 2.21[5] 2.41[6] 1.97[5] 5.76[6] 3.55[8] 5.73[6]
    3/2 1.61[5] 2.84[6] 1.32[5] 4.81[6] 4.19[8] 4.14[6]
    1/2 8.40[6] 1.83[6] 6.57[5] 2.19[6] 2.7[8] 2.16[6]
    DownLoad: CSV

    表 7  171Yb173Yb的超精细诱导5d6s 3D1,3IF6s2 1S0 E2跃迁的跃迁概率(s1). T1T2分别表示磁偶极超精细相互作用与电四极超精细相互作用下的诱导跃迁概率. R1R3表示超精细诱导跃迁5d6s 3D1IF6s2 1S03D2微扰态和1D2微扰态与3D1态混合后的诱导跃迁概率. R1R3表示超精细诱导跃迁5d6s 3D3IF6s2 1S03D2微扰态和1D2微扰态与3D3态混合后的诱导跃迁概率. 方括号内的数值代表以10 为底的指数, 圆括号内的数值代表误差

    Table 7.  Transition probabilities (in s1) for the hyperfine-induced 5d6s 3D1,3IF6s2 1S0 E2 transitions in 171Yb and 173Yb. T1 and T2 represent the induced transition probabilities under magnetic dipole hyperfine interaction and electric quadrupole hyperfine interaction, respectively. R1 and R3 represent the transition probabilities in the hyperfine-induced transition 5d6s 3D1IF6s2 1S0, where the perturbed states 3D2 and 1D2 are mixed with the 3D1 state. Similarly, R1 and R3 denote the transition probabilities in the hyperfine-induced transition 5d6s 3D3IF6s2 1S0, where the perturbed states 3D2 and 1D2 are mixed with the 3D3 state. The numerical values in square brackets denote the exponentiation with base 10, while the values in parentheses represent the error.

    R1 R3 Total
    F T1 T2 T1 T2
    3/2 1.09[8] 0 2.64[9] 0 2.42(23)[8]
    7/2 2.48[9] 1.37[11] 6.00[10] 8.53[14] 6.13(60)[9]
    5/2 2.35[9] 7.29[12] 5.69[10] 4.55[14] 4.82(47)[9]
    3/2 1.16[9] 2.55[11] 2.80[10] 1.60[13] 2.05(20)[9]
    R1 R3 Total
    F T1 T2 T1 T2
    5/2 6.41[10] 0 4.96[9] 0 9.16(89)[9]
    9/2 1.27[10] 1.51[12] 9.85[10] 3.75[14] 1.94(18)[9]
    7/2 1.48[10] 2.74[14] 1.15[9] 6.82[16] 2.10(20)[9]
    5/2 1.12[10] 1.33[12] 8.70[10] 3.30[14] 1.50(14)[9]
    3/2 5.92[11] 1.85[12] 4.58[10] 4.60[14] 7.58(74)[10]
    1/2 1.62[11] 7.68[13] 1.25[10] 1.91[14] 2.02(19)[10]
    DownLoad: CSV

    表 8  171Yb173Yb的超精细诱导5d6s 3D1IF6s2 1S0 E2跃迁的跃迁幅度. E2AE2B分别表示磁偶极超精细相互作用与电四极超精细相互作用下的诱导跃迁幅度. E2tot表示磁偶极与电四极超精细相互作用共同作用下的诱导跃迁幅度. 方括号内的数值代表以10为底的指数, 圆括号内的数值代表误差

    Table 8.  Transition amplitude of the hyperfine-induced 5d6s 3D1IF6s2 1S0 E2 transition in 171Yb and 173Yb. E2A and E2B represent the induced transition amplitudes under the magnetic dipole hyperfine interaction and electric quadrupole hyperfine interaction, respectively. E2tot denotes the induced transition amplitude under the combined influence of magnetic dipole and electric quadrupole hyperfine interactions. The numerical values in square brackets denote the exponentiation with base 10, while the values in parentheses represent the error.

    IF Ref.
    1/2, 3/2 5/2, 3/2 5/2, 5/5 5/2, 7/2
    E2A 6.43[4] 3.63[4] 6.34[4] 7.52[4] Kozlov[11]
    1.62[4] 0.53[4] 9.26[5] 1.09[4] This work
    E2B 0 3.90[5] 2.10[5] 2.80[5] Kozlov[11]
    0 7.88[6] 5.16[6] 8.16[6] This work
    E2tot 6.40(1.0)[4] 4.00(60)[4] 6.60(1.0)[4] 7.20(1.2)[4] Kozlov[11]
    1.62(6)[4] 4.50(20)[5] 9.76(41)[5] 1.01(4)[4] This work
    DownLoad: CSV
    Baidu
  • [1]

    Bouchiat M, Bouchiat C 1974 J. Phys. 35 899Google Scholar

    [2]

    Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [3]

    Roberts B, Dzuba V, Flambaum V 2015 Annu. Rev. Nucl. Part. Sci. 65 63Google Scholar

    [4]

    DeMille D 1995 Phys. Rev. Lett. 74 4165Google Scholar

    [5]

    Tsigutkin K, Dounas Frazer D, Family A, Stalnaker J E, Yashchuk V V, Budker D 2009 Phys. Rev. Lett. 103 071601Google Scholar

    [6]

    Antypas D, Fabricant A, Stalnaker J E, Tsigutkin K, Flambaum V, Budker D 2019 Nat. Phys. 15 120Google Scholar

    [7]

    Tsigutkin K, Dounas Frazer D, Family A, Stalnaker J E, Yashchuk V V, Budker D 2010 Phys. Rev. A 81 032114Google Scholar

    [8]

    Dzuba V, Flambaum V 2011 Phys. Rev. A 83 042514Google Scholar

    [9]

    Stalnaker J, Budker D, DeMille D, Freedman S, Yashchuk V V 2002 Phys. Rev. A 66 031403Google Scholar

    [10]

    Sur C, Chaudhuri R K 2007 Phys. Rev. A 76 012509Google Scholar

    [11]

    Kozlov M, Dzuba V, Flambaum V 2019 Phys. Rev. A 99 012516Google Scholar

    [12]

    Stone N 2016 At. Data Nucl. Data Tables 111–112 1Google Scholar

    [13]

    Schwartz C 1955 Phys. Rev. 97 380Google Scholar

    [14]

    Racah G 1942 Phys. Rev. 62 438Google Scholar

    [15]

    Andersson M, Jönsson P 2008 Comput. Phys. Commun. 178 156Google Scholar

    [16]

    Radzig A A, Smirnov B M 2012 Reference Data on Atoms, Molecules, and Ions (Berlin: Springer) p99

    [17]

    Lu B, Lu X, Wang T, Chang H 2022 J. Phys. B: At. Mol. Phys. 55 205002Google Scholar

    [18]

    Bieroń J, Pyykkö P, Sundholm D, Kellö V, Sadlej A J 2001 Phys. Rev. A 64 052507Google Scholar

    [19]

    Li J, Godefroid M, Wang J 2016 J. Phys. B: At. Mol. Phys. 49 115002Google Scholar

    [20]

    Hertel I V, Schulz C P 2014 Atoms, Molecules and Optical Physics (Berlin: Springer) p212

    [21]

    Johnson W R 2007 Atomic Structure Theory (Berlin: Springer) p181

    [22]

    Andersson M, Yao K, Hutton R, Zou Y, Chen C, Brage T 2008 Phys. Rev. A 77 042509Google Scholar

    [23]

    Li W, Grumer J, Brage T, Jönsson P 2020 Comput. Phys. Commun. 253 107211Google Scholar

    [24]

    Lu X, Guo F, Wang Y, Feng M, Liang T, Lu B, Chang H 2023 Phys. Rev. A 108 012820Google Scholar

    [25]

    Johnson W 2010 Can. J. Phys. 89 429Google Scholar

    [26]

    Grumer J, Brage T, Andersson M, Li J, Jönsson P, Li W, Yang Y, Hutton R, Zou Y 2014 Phys. Scr. 89 114002Google Scholar

    [27]

    Fischer C F, Brage T, Jönsson P 2022 Computational Atomic Structure: an MCHF Approach (New York: Routledge) p217

    [28]

    Li J, Jönsson P, Godefroid M, Dong C, Gaigalas G 2012 Phys. Rev. A 86 052523Google Scholar

    [29]

    Jönsson P 1993 Phys. Scr. 48 678Google Scholar

    [30]

    Jönsson P, Gaigalas G, Fischer C F, Bieroń J, Grant I P, Brage T, Ekman J, Godefroid M, Grumer J, Li J 2023 Atoms 11 68Google Scholar

    [31]

    Olsen J, Roos B O, Jorgensen P, Jensen H 1988 J. Chem. Phys. 89 2185Google Scholar

    [32]

    Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W, Li J, Brage T, Grant I P, Bieroń J, Fischer C F 2023 Atoms 11 7Google Scholar

    [33]

    Jönsson P, He X, Fischer C F, Grant I 2007 Comput. Phys. Commun. 177 597Google Scholar

    [34]

    Fischer C F, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184Google Scholar

    [35]

    Kramida A, Ralchenko Y, Reader J 2023 NIST Atomic Spectra Database (Version 5.11) https://physics.nist.gov/pml/atomic-spectra-database

    [36]

    Bowers C, Budker D, Freedman S, Gwinner G, Stalnaker J, DeMille D 1999 Phys. Rev. A 59 3513Google Scholar

    [37]

    Beloy K, Sherman J A, Lemke N D, Hinkley N, Oates C W, Ludlow A D 2012 Phys. Rev. A 86 051404Google Scholar

    [38]

    Ai D, Jin T, Zhang T, Luo L, Liu L, Zhou M, Xu X 2023 Phys. Rev. A 107 063107Google Scholar

    [39]

    Kronfeldt H D 1998 Phys. Scr. 1998 5Google Scholar

    [40]

    Porsev S, Rakhlina Y G, Kozlov M 1999 J. Phys. B: At. Mol. Phys. 32 1113Google Scholar

    [41]

    Holmgren L 1975 Phys. Scr. 12 119Google Scholar

    [42]

    Zhang T, Xie L, Li J, Lu Z 2017 Phys. Rev. A 96 012514Google Scholar

    [43]

    Bieroń J, Fischer C F, Jönsson P, Pyykkö P 2008 J. Phys. B: At. Mol. Phys. 41 115002Google Scholar

    [44]

    Singh A K, Angom D, Natarajan V 2013 Phys. Rev. A 87 012512Google Scholar

    [45]

    Zehnder A, Boehm F, Dey W, Engfer R, Walter H, Vuilleumier J 1975 Nucl. Phys. A 254 315Google Scholar

    [46]

    Cheng K, Chen M, Johnson W 2008 Phys. Rev. A 77 052504Google Scholar

  • [1] LI Wenbo, LI Bingbing, CHEN Hao, XIE Luyou, WU Zhongwen, DING Xiaobin, ZHANG Denghong, JIANG Jun, DONG Chenzhong. Fully relativistic distorted-wave method of studying electron-atom collision excitation process. Acta Physica Sinica, 2025, 74(3): 033401. doi: 10.7498/aps.74.20241467
    [2] Xiao Yi-Xin, Zhu Tian-Xiang, Liang Peng-Jun, Wang Yi-Yang, Zhou Zong-Quan, Li Chuan-Feng. Optical and hyperfine spectroscopic investigations on europium ions doped in yttrium orthosilicate waveguides fabricated by focused ion beam milling. Acta Physica Sinica, 2024, 73(22): 220303. doi: 10.7498/aps.73.20241070
    [3] Chen Run, Shao Xu-Ping, Huang Yun-Xia, Yang Xiao-Hua. Simulation of hyperfine-rotational spectrum of electromagnetic dipole transition rotation of BrF molecules. Acta Physica Sinica, 2023, 72(4): 043301. doi: 10.7498/aps.72.20221957
    [4] Wang Xia, Jia Fang-Shi, Yao Ke, Yan Jun, Li Ji-Guang, Wu Yong, Wang Jian-Guo. Hyperfine interaction constants and Landé g factors of clock states of Al-like ions. Acta Physica Sinica, 2023, 72(22): 223101. doi: 10.7498/aps.72.20230940
    [5] Zhang Tian-Cheng, Pan Gao-Yuan, Yu You-Jun, Dong Chen-Zhong, Ding Xiao-Bin. Ionization energy and valence electron orbital binding energy of superheavy element Og(Z = 118) and its homologs. Acta Physica Sinica, 2022, 71(21): 213201. doi: 10.7498/aps.71.20220813
    [6] Lou Bing-Qiong, Li Fang, Wang Pei-Yan, Wang Li-Ming, Tang Yong-Bo. Ab initio calculation of hyperfine-structure constant A of Fr and evaluation of magnetic dipole moments of Fr isotopes. Acta Physica Sinica, 2019, 68(9): 093101. doi: 10.7498/aps.68.20190113
    [7] Zhang Xiang, Lu Ben-Quan, Li Ji-Guang, Zou Hong-Xin. Theoretical investigation on hyperfine structure and isotope shift for 5d106s 2S1/2→5d96s2 2D5/2 clock transition in Hg+. Acta Physica Sinica, 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [8] Wu Yue-Long, Li Rui, Rui Yang, Jiang Hai-Feng, Wu Hai-Bin. Precise measurement of 6Li transition frequencies and hyperfine splitting. Acta Physica Sinica, 2018, 67(16): 163201. doi: 10.7498/aps.67.20181021
    [9] Zhang Ting-Xian, Li Ji-Guang, Liu Jian-Peng. Theoretical study on the isotope shift factors for the 3s2 1S0 → 3s3p 3,1P1o transitions in Al+ ion. Acta Physica Sinica, 2018, 67(5): 053101. doi: 10.7498/aps.67.20172261
    [10] Yang Guang, Wang Jie, Wang Jun-Min. Determination of the hyperfine coupling constants of the 5D5/2 state of 85Rb atoms by using high signal-to-noise ratio electromagnetically-induced transparency spectra. Acta Physica Sinica, 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [11] Yu Geng-Hua, Liu Hong, Zhao Peng-Yi, Xu Bing-Ming, Gao Dang-Li, Zhu Xiao-Ling, Yang Wei. Theoretical calculations on isotope shifts of Mg I by using relativistic multiconfiguration Dirac-Hartree-Fock method. Acta Physica Sinica, 2017, 66(11): 113101. doi: 10.7498/aps.66.113101
    [12] Ren Ya-Na, Yang Bao-Dong, Wang Jie, Yang Guang, Wang Jun-Min. Measurement of the magnetic dipole hyperfine constant Ahfs of cesium 7S1/2 state. Acta Physica Sinica, 2016, 65(7): 073103. doi: 10.7498/aps.65.073103
    [13] Duan Jun-Yi, Wang Yong, Zhang Lin-Jie, Zhao Jian-Ming, Li Chang-Yong, Jia Suo-Tang. Spontaneous evolution of Cs 47D Rydberg atoms at different fine levels. Acta Physica Sinica, 2015, 64(2): 023201. doi: 10.7498/aps.64.023201
    [14] Li Xiao-Li, Zhang Lian-Shui, Sun Jiang, Feng Xiao-Min. Electromagnetically induced negative refraction induced by microwave field driving hyperfine levels transition. Acta Physica Sinica, 2012, 61(4): 044202. doi: 10.7498/aps.61.044202
    [15] Xie Lin-Hua, Qiu Min. Correlation between optical spectrum, electron paramagnetic resonance spectrum and local structure of MnF2:Mn2+. Acta Physica Sinica, 2005, 54(12): 5845-5848. doi: 10.7498/aps.54.5845
    [16] TAN MING-LIANG, ZHU ZHENG-HE, ZHAO YONG-KUN, CHEN XIAO-FENG. RELATIVISTIC MULTICONFIGURATION CALCULATION OF FINE-STRUCTURE ENERGY LEVELS AND TRANSITIONS FOR Cu-LIKE Au50+. Acta Physica Sinica, 1996, 45(10): 1609-1614. doi: 10.7498/aps.45.1609
    [17] XI JIN-HUA, WU LI-JIN. EFFECTS OF THE CORE POLARIZATIONS ON THE HYPER FINE INTERACTION OF THE TRIPLET (3d2)3P STATES OF ScII. Acta Physica Sinica, 1992, 41(3): 370-378. doi: 10.7498/aps.41.370
    [18] WANG WAN-JUE. RELATIVISTIC MULTICONFIGURATION DIRAC-FOCK CALCULATION OF FINE-STRUCTURE ENERGY LEVELS AND TRANSITION WAVELENGTHS FOR N-LIKE KXIII, CaXIV, ScXV AND TiXVI. Acta Physica Sinica, 1992, 41(5): 726-731. doi: 10.7498/aps.41.726
    [19] XU ZU-XIONG, MA RU-ZHANG. MAXIMUM ENTROPY EVALUATION OF OVERLAPPED M?SSBAUER SPECLRA. Acta Physica Sinica, 1988, 37(12): 1949-1955. doi: 10.7498/aps.37.1949
    [20] TANG CHANG-GUO, DONG TAI-QIAN, ZHENG LE-MIN. THE NUTATION AND RELAXATION ASSOCIATED WITH THE HFS 0-0 TRANSITION OF THE Rb87 GROUND STATE. Acta Physica Sinica, 1983, 32(7): 829-837. doi: 10.7498/aps.32.829
Metrics
  • Abstract views:  4120
  • PDF Downloads:  119
Publishing process
  • Received Date:  05 January 2024
  • Accepted Date:  22 February 2024
  • Available Online:  04 March 2024
  • Published Online:  05 May 2024

/

返回文章
返回
Baidu
map