-
The parity violation effects via the
5d6s3D1→6s21S0 transition have been extensively investigated in ytterbium atoms. However, the M1 transition between the excitation state5d6s3D1 and the ground state6s21S0 , as well as the hyperfine-induced E2 transition, significantly affects the detection of parity violation signal. Therefore, it is imperative to obtain the accurate transition probabilities for the M1 and hyperfine-induced E2 transitions between the excitation state5d6s3D1 and the ground state6s21S0 . In this work, we use the multi-configuration Dirac-Hartree-Fock theory to precisely calculate the transition probabilities for the5d6s3D1→6s21S0 M1 and hyperfine-induced5d6s3D1,3→6s21S0 E2 transitions. We extensively analyze the influences of electronic correlation effects on the transition probabilities according to our calculations. Furthermore, we analyze the influences of different perturbing states and various hyperfine interactions on the transition probabilities. The calculated hyperfine constants of the e3D1,2,3 and1D2 states accord well with experimental measurements, validating the rationality of our computational model. By combining experimentally measured hyperfine constants with the theoretically derived electric field gradient of the extra nuclear electrons at the nucleus, we reevaluate the nuclear quadrupole moment of the173 Yb nucleus asQ=2.89(5)b , showing that our result is in excellent agreement with the presently recommended value.[1] Bouchiat M, Bouchiat C 1974 J. Phys. 35 899
Google Scholar
[2] Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008
Google Scholar
[3] Roberts B, Dzuba V, Flambaum V 2015 Annu. Rev. Nucl. Part. Sci. 65 63
Google Scholar
[4] DeMille D 1995 Phys. Rev. Lett. 74 4165
Google Scholar
[5] Tsigutkin K, Dounas Frazer D, Family A, Stalnaker J E, Yashchuk V V, Budker D 2009 Phys. Rev. Lett. 103 071601
Google Scholar
[6] Antypas D, Fabricant A, Stalnaker J E, Tsigutkin K, Flambaum V, Budker D 2019 Nat. Phys. 15 120
Google Scholar
[7] Tsigutkin K, Dounas Frazer D, Family A, Stalnaker J E, Yashchuk V V, Budker D 2010 Phys. Rev. A 81 032114
Google Scholar
[8] Dzuba V, Flambaum V 2011 Phys. Rev. A 83 042514
Google Scholar
[9] Stalnaker J, Budker D, DeMille D, Freedman S, Yashchuk V V 2002 Phys. Rev. A 66 031403
Google Scholar
[10] Sur C, Chaudhuri R K 2007 Phys. Rev. A 76 012509
Google Scholar
[11] Kozlov M, Dzuba V, Flambaum V 2019 Phys. Rev. A 99 012516
Google Scholar
[12] Stone N 2016 At. Data Nucl. Data Tables 111–112 1
Google Scholar
[13] Schwartz C 1955 Phys. Rev. 97 380
Google Scholar
[14] Racah G 1942 Phys. Rev. 62 438
Google Scholar
[15] Andersson M, Jönsson P 2008 Comput. Phys. Commun. 178 156
Google Scholar
[16] Radzig A A, Smirnov B M 2012 Reference Data on Atoms, Molecules, and Ions (Berlin: Springer) p99
[17] Lu B, Lu X, Wang T, Chang H 2022 J. Phys. B: At. Mol. Phys. 55 205002
Google Scholar
[18] Bieroń J, Pyykkö P, Sundholm D, Kellö V, Sadlej A J 2001 Phys. Rev. A 64 052507
Google Scholar
[19] Li J, Godefroid M, Wang J 2016 J. Phys. B: At. Mol. Phys. 49 115002
Google Scholar
[20] Hertel I V, Schulz C P 2014 Atoms, Molecules and Optical Physics (Berlin: Springer) p212
[21] Johnson W R 2007 Atomic Structure Theory (Berlin: Springer) p181
[22] Andersson M, Yao K, Hutton R, Zou Y, Chen C, Brage T 2008 Phys. Rev. A 77 042509
Google Scholar
[23] Li W, Grumer J, Brage T, Jönsson P 2020 Comput. Phys. Commun. 253 107211
Google Scholar
[24] Lu X, Guo F, Wang Y, Feng M, Liang T, Lu B, Chang H 2023 Phys. Rev. A 108 012820
Google Scholar
[25] Johnson W 2010 Can. J. Phys. 89 429
Google Scholar
[26] Grumer J, Brage T, Andersson M, Li J, Jönsson P, Li W, Yang Y, Hutton R, Zou Y 2014 Phys. Scr. 89 114002
Google Scholar
[27] Fischer C F, Brage T, Jönsson P 2022 Computational Atomic Structure: an MCHF Approach (New York: Routledge) p217
[28] Li J, Jönsson P, Godefroid M, Dong C, Gaigalas G 2012 Phys. Rev. A 86 052523
Google Scholar
[29] Jönsson P 1993 Phys. Scr. 48 678
Google Scholar
[30] Jönsson P, Gaigalas G, Fischer C F, Bieroń J, Grant I P, Brage T, Ekman J, Godefroid M, Grumer J, Li J 2023 Atoms 11 68
Google Scholar
[31] Olsen J, Roos B O, Jorgensen P, Jensen H 1988 J. Chem. Phys. 89 2185
Google Scholar
[32] Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W, Li J, Brage T, Grant I P, Bieroń J, Fischer C F 2023 Atoms 11 7
Google Scholar
[33] Jönsson P, He X, Fischer C F, Grant I 2007 Comput. Phys. Commun. 177 597
Google Scholar
[34] Fischer C F, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184
Google Scholar
[35] Kramida A, Ralchenko Y, Reader J 2023 NIST Atomic Spectra Database (Version 5.11) https://physics.nist.gov/pml/atomic-spectra-database
[36] Bowers C, Budker D, Freedman S, Gwinner G, Stalnaker J, DeMille D 1999 Phys. Rev. A 59 3513
Google Scholar
[37] Beloy K, Sherman J A, Lemke N D, Hinkley N, Oates C W, Ludlow A D 2012 Phys. Rev. A 86 051404
Google Scholar
[38] Ai D, Jin T, Zhang T, Luo L, Liu L, Zhou M, Xu X 2023 Phys. Rev. A 107 063107
Google Scholar
[39] Kronfeldt H D 1998 Phys. Scr. 1998 5
Google Scholar
[40] Porsev S, Rakhlina Y G, Kozlov M 1999 J. Phys. B: At. Mol. Phys. 32 1113
Google Scholar
[41] Holmgren L 1975 Phys. Scr. 12 119
Google Scholar
[42] Zhang T, Xie L, Li J, Lu Z 2017 Phys. Rev. A 96 012514
Google Scholar
[43] Bieroń J, Fischer C F, Jönsson P, Pyykkö P 2008 J. Phys. B: At. Mol. Phys. 41 115002
Google Scholar
[44] Singh A K, Angom D, Natarajan V 2013 Phys. Rev. A 87 012512
Google Scholar
[45] Zehnder A, Boehm F, Dey W, Engfer R, Walter H, Vuilleumier J 1975 Nucl. Phys. A 254 315
Google Scholar
[46] Cheng K, Chen M, Johnson W 2008 Phys. Rev. A 77 052504
Google Scholar
-
表 1 不同计算模型下打开的光谱轨道(active orbitals, AO)、虚轨道(virtual orbitals, VO) 以及模型产生的组态空间内总的组态个数(number of configuration state wavefunctions, NCFs). J=0 表示1S0 态, J=1,3 表示3D1,3 态, 而J=2对应3D2 和1D2 态
Table 1. Active orbitals (AO), virtual orbitals (VO) opened under different calculation models, and NCFs is the total number of the configurations in the configuration space. J=0 represents 1S0 state, J=1,3 represents 3D1,3 states, and the J=2 corresponds to the 3D2 and 1D2 states, respectively.
Models AO VO NCFs J=0 J=1 J=2 J=3 DHF 1 1 2 1 VV-1 {5d6s;6s2} {7s,6p,6d,5f,5g} 15 16 35 24 C5V-2 {5s25p65d6s;5s25p66s2} {8s,7p,7d,6f,6g,6h} 336 1954 4361 3213 C4V-3 {4s24p64d104f145s25p65d6s;4s24p64d104f145s25p66s2} {9s,8p,8d,7f,7g} 2896 20054 49368 37668 C4V-4 {4s24p64d104f145s25p65d6s;4s24p64d104f145s25p66s2} {10s,9p,9d,8f,8g,8h} 5058 35649 88596 68104 C4V-5 {4s24p64d104f145s25p65d6s;4s24p64d104f145s25p66s2} {11s,10p,10d,9f,9g,9h} 7822 55699 139251 107472 C4V-6 {4s24p64d104f145s25p65d6s;4s24p64d104f145s25p66s2} {12s,11p,11d,10f,10g,9h} 10681 76208 190245 146319 C4V-7 {4s24p64d104f145s25p65d6s;4s24p64d104f145s25p66s2} {13s,12p,12d,11f,10g,9h} 13213 93967 232975 177889 CC5-7 ∪{5s25p65d6s;5s25p6s2} {13s,12p,12d,11f,10g,9h} 154602 435843 643878 750192 MR-3 ∪{5s25p6p2;5s25p25d2;5s25p46s26d7d {9s,8p,8d,7f,7g,7h} 754484 2123833 3122817 3614260 5s25p6s7s;5s25p66d7s;5s25p45d6s26d; 5s25p55d6s6p;5s25p65f6p;5s25p66s6d} 表 2 不同计算模型下5d6s 3D1→6s2 1S0 M1跃迁的激发能ΔE(cm−1), RME (a.u.)和跃迁概率R(s−1). 方括号中的值表示以10为底的指数, 圆括号内的值表示误差
Table 2. Excitation energy ΔE (in cm−1), transition probability R (in s−1), and RME (in a.u.) for the 5d6s 3D1→6s2 1S0 M1 transition under various computational models. The values in brackets represent exponents with a base of 10, and values in parentheses indicate errors.
表 3 5d6s 1,3D2→6s2 1S0 E2 跃迁的激发能ΔE(cm−1), RME(a.u.) 和跃迁概率R(s−1)在不同计算模型下的结果. V表示速度规范, L表示长度规范
Table 3. Excitation energy ΔE (in cm−1), RME (in a.u.), and transition probability R (in s−1) for the 5d6s 1,3D2→6s2 1S0 E2 transition under various computational models. “V” denotes the velocity gauge, and “L” represents the length gauge.
3D2→1S0 1D2→1S0 Models ΔE RMEL RMEV RL RV ΔE RMEL RMEV RL RV DHF 21114.02 0.05 0.05 0.001 0.001 28822.95 −15.05 −13.59 403.87 329.46 VV-1 25010.57 2.09 2.00 3.85 3.51 26254.24 −15.26 −14.84 238.18 225.08 C4V-7 22406.02 1.18 1.12 0.71 0.64 26208.26 −11.67 −11.26 150.96 140.41 CC5-7 23171.20 0.86 0.85 0.45 0.43 28126.76 −13.55 −12.75 289.61 256.70 MR-3 24685.75 1.21 1.15 1.20 1.10 28313.29 −12.63 −12.84 260.01 232.25 Breit+QED 24553.44 1.18 1.13 1.11 1.02 28206.64 −12.61 −11.94 254.33 228.31 Bowers等[36] 1.12(4) Expt.[36] 1.45(7) NIST[35] 24751.95 27677.67 表 4 5d6s 3D1,2,3态与1D2态的磁偶极超精细常数A (MHz)和电四极超精细常数B (MHz)
Table 4. Magnetic dipole hyperfine constant A (in MHz) and electric quadrupole hyperfine constant B (in MHz) for the 5d6s 3D1,2,3 and 1D2 states.
171Yb 173Yb Ref. A A B 3D1 Expt. −2040(2) 562.8(5) 337(2) [36] −2047(47) [37] −2032.67(17) [38] 563(1) 335(1) [39] Theory −2349 648 249 [11] 596 290 [40] 597 [41] −2119.3 583.79 338.46 This work 3D2 Expt. 1315(4) −363.4(10) 487(5) [36] −362(2) 482(22) [39] Theory 1354 −373 387 [11] −351 440 [40] −765 [41] 1314.62 −362.13 491.39 This work 3D3 Expt. −430(1) 909(29) [39] Theory −420 728 [40] −477 [41] 1626.97 −448.17 836.5 This work 1D2 Expt. 100(18) 1115(89) [39] Theory 131 1086 [40] 465 [41] −313.87 86.46 1053.44 This work 表 5 不同模型下的EFG(a.u.), 以及重新评估后的173Yb原子核电四极矩Q(b)
Table 5. The EFG (in a.u.) calculated under different models, along with the reassessment of the nuclear electric quadrupole moment Q (in b) for 173Yb.
Models 3D1 3D2 3D3 EFG Q EFG Q EFG Q DHF 0.23 6.09 0.32 6.47 0.55 7.07 C4V-7 0.52 2.75 0.77 2.69 1.29 2.99 CC5-7 0.43 3.26 0.63 3.27 1.10 3.52 MR-3 0.51 2.79 0.74 2.77 1.27 3.04 表 6 171Yb和173Yb原子的超精细诱导5d6s 3D1,3IF′→6s2 1S0 E2跃迁的混合系数(a.u.)
Table 6. Mixing coefficients (in a.u.) for the hyperfine-induced 5d6s 3D1,3IF′→6s2 1S0 E2 transition in 171Yb and 173Yb.
(3D2,3D1) (1D2,3D1) F′ εA1 εB1 ε1 εA2 εB2 ε2 171Yb 3/2 −1.54[−4] 0 −1.54[−4] 7.1[−6] 0 7.1[−6] 7/2 −7.36[−5] −5.47[−6] −7.91[−5] 3.39[−6] 4.04[−8] 3.43[−6] 173Yb 5/2 −7.17[−5] 3.99[−6] −6.77[−5] 3.30[−6] −2.95[−8] 3.27[−6] 3/2 −5.03[−5] 7.47[−6] −4.28[−5] 2.31[−6] −5.53[−8] 2.26[−6] (3D2,3D3) (1D2,3D3) F′ εA1 εB1 ε1 εA2 εB2 ε2 171Yb 5/2 5.28[−5] 0 5.28[−5] –1.37[−5] 0 −1.37[−5] 9/2 2.35[−5] 2.56[−6] 2.61[−5] −6.13[−6] −3.78[−8] −6.17[−6] 7/2 2.54[−5] −3.46[−7] 2.51[−5] −6.61[−6] 5.1[−9] −6.61[−6] 173Yb 5/2 2.21[−5] −2.41[−6] 1.97[−5] −5.76[−6] 3.55[−8] −5.73[−6] 3/2 1.61[−5] −2.84[−6] 1.32[−5] −4.81[−6] 4.19[−8] −4.14[−6] 1/2 8.40[−6] −1.83[−6] 6.57[−5] −2.19[−6] 2.7[−8] −2.16[−6] 表 7 171Yb和173Yb的超精细诱导5d6s 3D1,3IF′→6s2 1S0 E2跃迁的跃迁概率(s−1). T1与T2分别表示磁偶极超精细相互作用与电四极超精细相互作用下的诱导跃迁概率. R1与R3表示超精细诱导跃迁5d6s 3D1IF′→6s2 1S0中3D2微扰态和1D2微扰态与3D1态混合后的诱导跃迁概率. R′1与R′3表示超精细诱导跃迁5d6s 3D3IF′→6s2 1S0中3D2微扰态和1D2微扰态与3D3态混合后的诱导跃迁概率. 方括号内的数值代表以10 为底的指数, 圆括号内的数值代表误差
Table 7. Transition probabilities (in s−1) for the hyperfine-induced 5d6s 3D1,3IF′→6s2 1S0 E2 transitions in 171Yb and 173Yb. T1 and T2 represent the induced transition probabilities under magnetic dipole hyperfine interaction and electric quadrupole hyperfine interaction, respectively. R1 and R3 represent the transition probabilities in the hyperfine-induced transition 5d6s 3D1IF′→6s2 1S0, where the perturbed states 3D2 and 1D2 are mixed with the 3D1 state. Similarly, R′1 and R′3 denote the transition probabilities in the hyperfine-induced transition 5d6s 3D3IF′→6s2 1S0, where the perturbed states 3D2 and 1D2 are mixed with the 3D3 state. The numerical values in square brackets denote the exponentiation with base 10, while the values in parentheses represent the error.
R1 R3 Total F′ T1 T2 T1 T2 3/2 1.09[−8] 0 2.64[−9] 0 2.42(23)[−8] 7/2 2.48[−9] 1.37[−11] 6.00[−10] 8.53[−14] 6.13(60)[−9] 5/2 2.35[−9] 7.29[−12] 5.69[−10] 4.55[−14] 4.82(47)[−9] 3/2 1.16[−9] 2.55[−11] 2.80[−10] 1.60[−13] 2.05(20)[−9] R′1 R′3 Total F′ T1 T2 T1 T2 5/2 6.41[−10] 0 4.96[−9] 0 9.16(89)[−9] 9/2 1.27[−10] 1.51[−12] 9.85[−10] 3.75[−14] 1.94(18)[−9] 7/2 1.48[−10] 2.74[−14] 1.15[−9] 6.82[−16] 2.10(20)[−9] 5/2 1.12[−10] 1.33[−12] 8.70[−10] 3.30[−14] 1.50(14)[−9] 3/2 5.92[−11] 1.85[−12] 4.58[−10] 4.60[−14] 7.58(74)[−10] 1/2 1.62[−11] 7.68[−13] 1.25[−10] 1.91[−14] 2.02(19)[−10] 表 8 171Yb和173Yb的超精细诱导5d6s 3D1IF′→6s2 1S0 E2跃迁的跃迁幅度. E2A与E2B分别表示磁偶极超精细相互作用与电四极超精细相互作用下的诱导跃迁幅度. E2tot表示磁偶极与电四极超精细相互作用共同作用下的诱导跃迁幅度. 方括号内的数值代表以10为底的指数, 圆括号内的数值代表误差
Table 8. Transition amplitude of the hyperfine-induced 5d6s 3D1IF′→6s2 1S0 E2 transition in 171Yb and 173Yb. E2A and E2B represent the induced transition amplitudes under the magnetic dipole hyperfine interaction and electric quadrupole hyperfine interaction, respectively. E2tot denotes the induced transition amplitude under the combined influence of magnetic dipole and electric quadrupole hyperfine interactions. The numerical values in square brackets denote the exponentiation with base 10, while the values in parentheses represent the error.
IF Ref. 1/2, 3/2 5/2, 3/2 5/2, 5/5 5/2, 7/2 E2A 6.43[−4] −3.63[−4] 6.34[−4] −7.52[−4] Kozlov[11] 1.62[−4] −0.53[−4] 9.26[−5] −1.09[−4] This work E2B 0 −3.90[−5] 2.10[−5] 2.80[−5] Kozlov[11] 0 −7.88[−6] 5.16[−6] 8.16[−6] This work E2tot 6.40(1.0)[−4] −4.00(60)[−4] 6.60(1.0)[−4] −7.20(1.2)[−4] Kozlov[11] 1.62(6)[−4] −4.50(20)[−5] 9.76(41)[−5] −1.01(4)[−4] This work -
[1] Bouchiat M, Bouchiat C 1974 J. Phys. 35 899
Google Scholar
[2] Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008
Google Scholar
[3] Roberts B, Dzuba V, Flambaum V 2015 Annu. Rev. Nucl. Part. Sci. 65 63
Google Scholar
[4] DeMille D 1995 Phys. Rev. Lett. 74 4165
Google Scholar
[5] Tsigutkin K, Dounas Frazer D, Family A, Stalnaker J E, Yashchuk V V, Budker D 2009 Phys. Rev. Lett. 103 071601
Google Scholar
[6] Antypas D, Fabricant A, Stalnaker J E, Tsigutkin K, Flambaum V, Budker D 2019 Nat. Phys. 15 120
Google Scholar
[7] Tsigutkin K, Dounas Frazer D, Family A, Stalnaker J E, Yashchuk V V, Budker D 2010 Phys. Rev. A 81 032114
Google Scholar
[8] Dzuba V, Flambaum V 2011 Phys. Rev. A 83 042514
Google Scholar
[9] Stalnaker J, Budker D, DeMille D, Freedman S, Yashchuk V V 2002 Phys. Rev. A 66 031403
Google Scholar
[10] Sur C, Chaudhuri R K 2007 Phys. Rev. A 76 012509
Google Scholar
[11] Kozlov M, Dzuba V, Flambaum V 2019 Phys. Rev. A 99 012516
Google Scholar
[12] Stone N 2016 At. Data Nucl. Data Tables 111–112 1
Google Scholar
[13] Schwartz C 1955 Phys. Rev. 97 380
Google Scholar
[14] Racah G 1942 Phys. Rev. 62 438
Google Scholar
[15] Andersson M, Jönsson P 2008 Comput. Phys. Commun. 178 156
Google Scholar
[16] Radzig A A, Smirnov B M 2012 Reference Data on Atoms, Molecules, and Ions (Berlin: Springer) p99
[17] Lu B, Lu X, Wang T, Chang H 2022 J. Phys. B: At. Mol. Phys. 55 205002
Google Scholar
[18] Bieroń J, Pyykkö P, Sundholm D, Kellö V, Sadlej A J 2001 Phys. Rev. A 64 052507
Google Scholar
[19] Li J, Godefroid M, Wang J 2016 J. Phys. B: At. Mol. Phys. 49 115002
Google Scholar
[20] Hertel I V, Schulz C P 2014 Atoms, Molecules and Optical Physics (Berlin: Springer) p212
[21] Johnson W R 2007 Atomic Structure Theory (Berlin: Springer) p181
[22] Andersson M, Yao K, Hutton R, Zou Y, Chen C, Brage T 2008 Phys. Rev. A 77 042509
Google Scholar
[23] Li W, Grumer J, Brage T, Jönsson P 2020 Comput. Phys. Commun. 253 107211
Google Scholar
[24] Lu X, Guo F, Wang Y, Feng M, Liang T, Lu B, Chang H 2023 Phys. Rev. A 108 012820
Google Scholar
[25] Johnson W 2010 Can. J. Phys. 89 429
Google Scholar
[26] Grumer J, Brage T, Andersson M, Li J, Jönsson P, Li W, Yang Y, Hutton R, Zou Y 2014 Phys. Scr. 89 114002
Google Scholar
[27] Fischer C F, Brage T, Jönsson P 2022 Computational Atomic Structure: an MCHF Approach (New York: Routledge) p217
[28] Li J, Jönsson P, Godefroid M, Dong C, Gaigalas G 2012 Phys. Rev. A 86 052523
Google Scholar
[29] Jönsson P 1993 Phys. Scr. 48 678
Google Scholar
[30] Jönsson P, Gaigalas G, Fischer C F, Bieroń J, Grant I P, Brage T, Ekman J, Godefroid M, Grumer J, Li J 2023 Atoms 11 68
Google Scholar
[31] Olsen J, Roos B O, Jorgensen P, Jensen H 1988 J. Chem. Phys. 89 2185
Google Scholar
[32] Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W, Li J, Brage T, Grant I P, Bieroń J, Fischer C F 2023 Atoms 11 7
Google Scholar
[33] Jönsson P, He X, Fischer C F, Grant I 2007 Comput. Phys. Commun. 177 597
Google Scholar
[34] Fischer C F, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184
Google Scholar
[35] Kramida A, Ralchenko Y, Reader J 2023 NIST Atomic Spectra Database (Version 5.11) https://physics.nist.gov/pml/atomic-spectra-database
[36] Bowers C, Budker D, Freedman S, Gwinner G, Stalnaker J, DeMille D 1999 Phys. Rev. A 59 3513
Google Scholar
[37] Beloy K, Sherman J A, Lemke N D, Hinkley N, Oates C W, Ludlow A D 2012 Phys. Rev. A 86 051404
Google Scholar
[38] Ai D, Jin T, Zhang T, Luo L, Liu L, Zhou M, Xu X 2023 Phys. Rev. A 107 063107
Google Scholar
[39] Kronfeldt H D 1998 Phys. Scr. 1998 5
Google Scholar
[40] Porsev S, Rakhlina Y G, Kozlov M 1999 J. Phys. B: At. Mol. Phys. 32 1113
Google Scholar
[41] Holmgren L 1975 Phys. Scr. 12 119
Google Scholar
[42] Zhang T, Xie L, Li J, Lu Z 2017 Phys. Rev. A 96 012514
Google Scholar
[43] Bieroń J, Fischer C F, Jönsson P, Pyykkö P 2008 J. Phys. B: At. Mol. Phys. 41 115002
Google Scholar
[44] Singh A K, Angom D, Natarajan V 2013 Phys. Rev. A 87 012512
Google Scholar
[45] Zehnder A, Boehm F, Dey W, Engfer R, Walter H, Vuilleumier J 1975 Nucl. Phys. A 254 315
Google Scholar
[46] Cheng K, Chen M, Johnson W 2008 Phys. Rev. A 77 052504
Google Scholar
Catalog
Metrics
- Abstract views: 4120
- PDF Downloads: 119