-
The electron-atom (ion) collision excitation process is one of the most common inelastic scattering processes. It is of great significance in the fields of astrophysics and laboratory plasma. The relativistic distorted-wave method is a widely used theoretical tool for studying electron-atom (ion) collisions, with the aim of obtaining scattering parameters, such as impact cross sections and rate coefficients. In recent years, we have developed a set of fully relativistic distorted-wave methods and programs of studying the electron-atom collision excitation processes. This method is based on the multi-configuration Dirac-Hartree-Fock (MCDHF) method, together with the corresponding packages GRASP 92/2K/2018 and RATIP. In the present work, continuum state wave functions, total and differential cross sections, state multipoles, integral and differential Stokes parameters of the radiation photon after the impact excitation processes of polarized electrons and atoms are calculated. The influences of electron correlation effects, Breit interaction, and plasma screening effects on the excitation cross sections are discussed. The present methods and programs possess several advantages below. 1) In the calculations of the continuum electron wave functions, the direct interaction and exchange interaction between the bound electron and the continuum electron are both included. Then, the anti-symmetrized coupling wave function, which is composed of the continuum electron wave function and the continuum ion wave function, is utilized as the wave function of the system. This method is employed to study the low-energy electron scattering process and medium energy electron scattering process. 2) In this method, the target state wave function is obtained form the MCDHF theory and the corresponding GRASP packages. The MCDHF method has the advantage of being able to consider the electron correlation effects, including valence-valence, core-valence, and core-core correlations, as well as the influence of Breit interaction and quantum electrodynamics effect on the target state wave function. Furthermore, the calculation of the collision excitation matrix elements also includes the contribution of the Breit interaction. Consequently, the present method integrates the advantages of both the MCDHF method and distorted-wave method, thus is made suitable for studying the scattering processes of highly charged ions. In addition, it facilitates the study of the influence of higher-order effects on the collision dynamics, thereby obtaining high-precision theoretical data. 3) The current method and program can also be utilized to study the scattering cross section of electron-atom collision excitation processes, as well as the influence of plasma screening effects on collision excitation. Furthermore, the state multipoles, differential Stokes parameters, integral Stokes parameters, and orientation parameters of electron-complex atom collision excitation can be studied in detail by using the present method and program. -
Keywords:
- collision excitation of electron-atom /
- relativistic distorted-wave method /
- multi-configuration Dirac-Hartree-Fock method
[1] Fontes C J, Sampson D H, Zhang H L 1993 Phys. Rev. A 47 1009
Google Scholar
[2] Fontes C J, Zhang H L, Sampson D H 1999 Phys. Rev. A 59 295
Google Scholar
[3] Ren C, Wu Z W, Jiang J, Xie L Y, Zhang D H, Dong C Z 2018 Phys. Rev. A 98 012711
Google Scholar
[4] Jakubowicz H, Moores D L 1981 J. Phys. B: Atom. Mol. Phys. 14 3733
Google Scholar
[5] Bartschat K, Burke P G 1987 J. Phys. B: Atom. Mol. Phys. 20 3191
Google Scholar
[6] Teng H G 2000 J. Phys. B: Atom. Mol. Phys. 33 L553
Google Scholar
[7] Wu D, Loch S D, Pindzola M S, Balance C P 2012 Phys. Rev. A 85 012711
Google Scholar
[8] Liu P F, Liu Y P, Zeng J L, Yuan J M 2014 Phys. Rev. A 89 042704
Google Scholar
[9] 蒋军2007 硕士学位论文(兰州: 西北师范大学)
Jiang J 2007 M. S. Thesis (Lanzhou: Northwest Normal University
[10] Suckewer S, Hinnov E 1978 Phys. Rev. Lett. 41 756
Google Scholar
[11] Eichler J 1990 Phys. Rep. 193 165
Google Scholar
[12] Vane C R, Datz S, Dittner P F, Giese J, Jones N L, Krause H F, Rosseel T M, Peterson R S 1994 Phys. Rev. A 49 1847
Google Scholar
[13] Wan J J, Dong C Z, Ding X B, Ma X W, Rzadkiewicz J, Stöhlker T, Fritzsche S 2009 Phys. Rev. A 79 022707
Google Scholar
[14] Eichler J, Stöhlker T 2007 Phys. Rep. 439 1
Google Scholar
[15] Biswas S, Monti J M, Tachino C A, Rivarola R D, Tribedi L C 2015 J. Phys. B: At. Mol. Opt. Phys. 48 115206
Google Scholar
[16] Abdurakhmanov I B, Kadyrov A S, Avazbaev S K, Bray I 2016 J. Phys. B: At. Mol. Opt. Phys. 49 115203
Google Scholar
[17] Zhang S B, Wang J G, Janev R K 2010 Phys. Rev. Lett. 104 023203
Google Scholar
[18] Fang X, Liu X W 2013 Mon. Not. R. Astron. Soc. 429 2791
Google Scholar
[19] Menchero L F, Zatsarinny O, Bartschat K 2017 J. Phys. B: At. Mol. Opt. Phys. 50 065203
Google Scholar
[20] Cheung C, Safronova M, Porsev S 2021 Symmetry 13 621
Google Scholar
[21] Wu Z W, He Z M, Tian Z Q, Dong C Z, Fritzsche S 2022 Phys. Rev. A 105 062813
Google Scholar
[22] Li F H, Li J T, Zheng Y, Guo L X, Liu W, Liu Z Y 2023 IEEE T. Plasma Sci. 51 3579
Google Scholar
[23] Yan J, Liu Y P, Hou Y, Gao C, Wu J H, Zeng J L, Yuan J M 2023 Chin. Phys. B 32 063101
Google Scholar
[24] Zeng J L, Jiang X B, Gao C, Wu J H, Yuan J M 2024 Results Phys. 58 107522
Google Scholar
[25] 刘丽娟2012 硕士学位论文(兰州: 西北师范大学)
Liu L J 2012 M. S. Thesis (Lanzhou: Northwest Normal University
[26] Silver J D, Varney A J, Margolis H S, et al. 1994 Rev. Sci. Instrum. 65 1072
Google Scholar
[27] Biedermann C, Förster A, Fußmann G, Radtke R 1997 Phys. Scr. T73 360
Google Scholar
[28] Crespo López-Urrutia J R, Dorn A, Moshammer R, Ullrich J 1999 Phys. Scr. T80B 502
Google Scholar
[29] Beiersdorfer P, Brown G V 2015 Phys. Rev. A 91 032514
Google Scholar
[30] Hu Z M, Han X Y, Li Y M, Kato D, Tong X M, Nakamura N 2012 Phys. Rev. Lett. 108 073002
Google Scholar
[31] Yan C L, Lu Q, Xie Y M, Li B L, Fu N, Zou Y, Chen C, Xiao J 2022 Phys. Rev. A 105 032820
Google Scholar
[32] Dunn G H, Djurić N, Chung Y S, Bannister M, Smith A C H 1995 Nucl. Instr. Meth. Phys. Res. B 98 107
Google Scholar
[33] Taylor P O, Dunn G H 1973 Phys. Rev. A 8 2304
Google Scholar
[34] Rogers W T, Olsen J Q, Dunn G H 1978 Phys. Rev. A 18 1353
Google Scholar
[35] Huber B A, Ristori C, Hervieux P A, Maurel M, Guet C, Andrä H J 1991 Phys. Rev. Lett. 67 1407
Google Scholar
[36] Huber B A, Ristori C, Guet C, Küchler D, Johnson W R 1994 Phys. Rev. Lett. 73 2301
Google Scholar
[37] Srigengan B, Williams I D, Newell W R 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L605
Google Scholar
[38] Bannister M E, Djurić N, Woitke O, Dunn G H, Chung Y S, Smith A C H, Wallbank B, Berrington K A 1999 Int. J. Mass Spectrom. 192 39
Google Scholar
[39] Phaneuf R A, Havener C C, Dunn G H, Müller A 1999 Rep. Prog. Phys. 62 1143
Google Scholar
[40] Wallbank B, Bannister M E, Krause H F, Chung Y S, Smith A C H, Djurić N, Dunn G H 2007 Phys. Rev. A 75 052703
Google Scholar
[41] Smirnov Yu M 2015 J. Phys. B: At. Mol. Opt. Phys. 48 165204
Google Scholar
[42] Smirnov Yu M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 175204
Google Scholar
[43] Smirnov Yu M 2017 Russ. J. Phys. Chem. B 11 873
Google Scholar
[44] Huang Z K, Wen W Q, Wang S X, et al. 2020 Phys. Rev. A 102 062823
Google Scholar
[45] Wang S X, Huang Z K, Wen W Q, et al. 2022 Phys. Rev. A 106 042808
Google Scholar
[46] 邵林, 黄忠魁, 汶伟强, 汪书兴, 黄厚科, 马万路, 刘畅, 汪寒冰, 陈冬阳, 刘鑫, 周晓鹏, 赵冬梅, 张少锋, 朱林繁, 马新文 2024 73 123402
Google Scholar
Shao L, Huang Z K, Wen W Q, Wang S X, Huang H K, Ma W L, Liu C, Wang H B, Chen D Y, Liu X, Zhou X P, Zhao D M, Zhang S F, Zhu L F, Ma X W 2024 Acta Phys. Sin. 73 123402
Google Scholar
[47] Liu X J, Zhu L F, Yuan Z S, Li W B, Cheng H D, Huang Y P, Zhong Z P, Xu K Z, Li J M 2003 Phys. Rev. Lett. 91 193203
Google Scholar
[48] Du X J, Xu Y C, Wang L H, Li T J, Ma Z R, Wang S X, Zhu L F 2022 Phys. Rev. A 105 012812
Google Scholar
[49] Wang D H, Wang S X, Nie Z W, Wang L H, Xu Y C, Du X J, Zhu L F 2022 Plasma Sources Sci. Technol. 31 045012
Google Scholar
[50] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95
Google Scholar
[51] Xia Z H, Ren B, Zhang R T, Wei L, Han J, Meng T, Wang J, Ma P, Zhang Y, Tu B, Xiao J, Yao K, Zou Y, Zhu X L, Guo D L, Ma X, Wei B 2022 Astrophysical J. 933 207
Google Scholar
[52] Ren B, Ma P, Zhang Y, Wei L, Han J, Xia Z, Wang J, Meng T, Yu W, Zou Y, Yang C L, Wei B 2022 Phys. Rev. A 106 012805
Google Scholar
[53] Uhlmann L J, Dall R G, Truscott A G, Hoogerland M D, Baldwin K G H, Buckman S J 2005 Phys. Rev. Lett. 94 173201
Google Scholar
[54] Łukomski M, MacAskill J A, Seccombe D P, McGrath C, Sutton S, Teeuwen J, Kedzierski W, Reddish T J, McConkey J W, van Wijngaarden W A 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3535
Google Scholar
[55] Byron L J, Dall R G, Truscott A G 2010 Phys. Rev. A 81 013405
Google Scholar
[56] Daw A, Gardner L D, Janzen P H, Kohl J L 2006 Phys. Rev. A 73 032709
Google Scholar
[57] Knehr E, Kuzmin A, Doerner S, Wuensch S, Ilin K, Schmidt H, Siegel M 2020 Appl. Phys. Lett. 117 132602
Google Scholar
[58] Heddle D W O, Samuel M J 1970 J. Phys. B: Atom. Mol. Phys. 3 1593
Google Scholar
[59] Stewart Jr M D, Chilton J E, Boffard J B, Lin C C 2002 Phys. Rev. A 65 032704
Google Scholar
[60] McCarthy I E, Weigold E 1988 Rep. Prog. Phys. 51 299
Google Scholar
[61] McCarthy I E, Weigold E 1991 Rep. Prog. Phys. 54 789
Google Scholar
[62] Fursa D V, Bray I 1995 Phys. Rev. A 52 1279
Google Scholar
[63] Bray I, Fursa D V 1996 Phys. Rev. Lett. 76 2674
Google Scholar
[64] Bartschat K, Zatsarinny O 2015 Phys. Scr. 90 054006
Google Scholar
[65] Zhao G P, Liu L, Chang Z, Wang J G, Janev R K 2018 J. Phys. B: At. Mol. Opt. Phys. 51 085201
Google Scholar
[66] Liu Y D, Jia C C, Ma M X, Gao X, Liu L, Wu Y, Chen X J, Wang J G 2024 Chin. Phys. B 33 083401
Google Scholar
[67] 杨威, 蔡晓红, 于得洋 2005 54 2128
Google Scholar
Yang W, Cai X H, Yu D Y 2005 Acta Phys. Sin. 54 2128
Google Scholar
[68] Whiteford A D, Badnell N R, Ballance C P, O’Mullane M G, Summers H P, Thomas A L 2001 J. Phys. B: At. Mol. Opt. Phys. 34 3179
Google Scholar
[69] Fan Q P, Wang W H, Hu F, Cao L F, Zhang Q Q, Liu Y W, Jiang G 2014 Chin. Phys. B 23 113401
Google Scholar
[70] Chen Y Q, Jiang X W, Yao L F, Jiang W, Liu H N, Zhang Y 2023 Plasma Sources Sci. Technol. 32 045017
Google Scholar
[71] Bar-Shalom A, Klapisch M, Oreg J 1988 Phys. Rev. A 38 1773
Google Scholar
[72] Meng F C, Chen C Y, Wang Y S, Zou Y M 2007 Chinese Phys. Lett. 24 3404
Google Scholar
[73] Gu M F 2008 Can. J. Phys. 86 675
Google Scholar
[74] Podpaly Y, Clementson J, Beiersdorfer P, Williamson J, Brown G V, Gu M F 2009 Phys. Rev. A 80 052504
Google Scholar
[75] Ma Y L, Liu L, Xie L Y, Wu Y, Zhang D H, Dong C Z, Qu Y Z, Wang J G 2022 Chin. Phys. B 31 043401
Google Scholar
[76] Zhang C Y, Wu S J, Wang K, Si R, Yao K, Huang Z K, Wen W Q, Ma X W, Chen C Y, Badnell N R 2023 Phys. Rev. A 108 022801
Google Scholar
[77] 杜贵锋2011 硕士学位论文(兰州: 西北师范大学)
Du G F 2011 M. S. Thesis (Lanzhou: Northwest Normal University
[78] 杨宁选2009 硕士学位论文(兰州: 西北师范大学)
Yang N X 2009 M. S. Thesis (Lanzhou: Northwest Normal University
[79] Macek J, Jaecks D H 1971 Phys. Rev. A 4 2288
Google Scholar
[80] Bartschat K, Blum K, Hanne G F, Kessler J 1981 J. Phys. B: Atom. Mol. Phys. 14 3761
Google Scholar
[81] Bartschat K, Scott N S, Blum K, Burke P G 1984 J. Phys. B: Atom. Mol. Phys. 17 269
Google Scholar
[82] Khalid S M, Kleinpoppen H 1984 J. Phys. B: Atom. Mol. Phys. 17 243
Google Scholar
[83] Raeker A, Blum K, Bartschat K 1993 J. Phys. B: Atom. Mol. Phys. 26 1491
Google Scholar
[84] Kłosowski Ł, Piwiski M, Dziczek D, Wiśniewska K, Chwirot S 2007 Meas. Sci. Technol. 18 3801
Google Scholar
[85] Kłosowski Ł, Piwiski M, Dziczek D, Pleskacz K, Chwirot S 2009 Phys. Rev. A 80 062709
Google Scholar
[86] Hussey M, Murray A, MacGillivray W, King G C 2007 Phys. Rev. Lett. 99 133202
Google Scholar
[87] Percival A K, Jhumka S, Hussey M, Murray A J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 105203
Google Scholar
[88] Polasik M 1989 Phys. Rev. A 39 616
Google Scholar
[89] Wu Z W, Tian Z Q, Dong C Z, Surzhykov A, Fritzsche S 2023 New J. Phys. 25 093039
Google Scholar
[90] Ding X B, Koike F, Murakami I, Kato D, Sakaue H A, Dong C Z, Nakamura N 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035003
Google Scholar
[91] Wang K, Li S, Jönsson P, Fu N, Dang W, Guo X L, Chen C Y, Yan J, Chen Z B, Si R 2017 J. Quant. Spectrosc. Radiat. Transf. 187 375
Google Scholar
[92] 颉录有2008 博士学位论文(兰州: 西北师范大学)
Xie L Y 2008 Ph. D. Dissertation (Lanzhou: Northwest Normal University
[93] 武中文2012 硕士学位论文(兰州: 西北师范大学)
Wu Z W 2012 M. S. Thesis 2012 (Lanzhou: Northwest Normal University
[94] Parpia F A, Fischer C F, Grant I P 1996 Compt. Phys. Commun. 94 249
Google Scholar
[95] Jönsson P, Gaigalas G, Bieroń J, Fischer C F, Grant I P 2013 Compt. Phys. Commun. 184 2197
Google Scholar
[96] Fischer C F, Gaigalas G, Jönsson P, Bieroń J 2019 Compt. Phys. Commun. 237 184
Google Scholar
[97] Fritzsche S, Fischer C F, Dong C Z 2000 Compt. Phys. Commun. 124 340
Google Scholar
[98] Fritzsche S 2012 Compt. Phys. Commun. 183 1525
Google Scholar
[99] Carse G D, Walker D W 1973 J. Phys. B: Atom. Mol. Phys. 6 2529
Google Scholar
[100] Walker D W 1974 J. Phys. B: Atom. Mol. Phys. 7 97
Google Scholar
[101] Dong C Z, Xie L Y, Zhou X X, Ma X W, Fritzsche S 2003 Hyperfine Interact. 146 161
Google Scholar
[102] Li J G, Dong C Z, Yu Y J, Ding X B, Fritzsche S, Fricke B 2007 Sci. China Phys. Mech. 50 707
Google Scholar
[103] Xie L Y, Wang J G, Janev R K, Qu Y Z, Dong C Z 2012 Eur. Phys. J. D 66 125
Google Scholar
[104] Grant I P, McKenzie B J, Norrington P H, Mayers D F, Pyper N C 1980 Compt. Phys. Commun. 21 207
Google Scholar
[105] Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Compt. Phys. Commun. 55 425
Google Scholar
[106] Jiang J, Dong C Z, Xie L Y, Wang J G, Yan J, Fritzsche S 2007 Chin. Phys. Lett. 24 691
Google Scholar
[107] Li B W, Dong C Z, Jiang J, Wang J G 2010 Eur. Phys. J. D 59 201
Google Scholar
[108] Jiang J, Dong C Z, Xie L Y, Wang J G 2008 Phys. Rev. A 78 022709
Google Scholar
[109] 马小云2013 硕士学位论文(兰州: 西北师范大学)
Ma X Y 2013 M. S. Thesis (Lanzhou: Northwest Normal University
[110] Grant I P 1970 Adv. Phys. 19 747
Google Scholar
[111] Rodrigues G C, Ourdane M A, Bieroń J, Indelicato P, Lindroth E. 2000 Phys. Rev. A 63 012510
Google Scholar
[112] Dong C Z, Fritzsche S 2005 Phys. Rev. A 72 012507
Google Scholar
[113] Fischer C F, Godefroid M, Brage T, Jönsson P, Gaigalas G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 182004
Google Scholar
[114] Andersen N, Broad J T, Campbell E E B, Gallagher J W, Hertel I V 1997 Phys. Rep. 278 107
Google Scholar
[115] Jung R O, Boffard J B, Anderson L W, Lin C C 2005 Phys. Rev. A 72 022723
Google Scholar
[116] Jiang J, Dong C Z, Xie L Y, Zhou X X, Wang J G 2008 J. Phys. B: At. Mol. Opt. Phys. 41 245204
Google Scholar
[117] Goeke J, Hanne G F, Kessler J 1989 J. Phys. B: Atom. Mol. Phys. 22 1075
Google Scholar
[118] Beiersdorfer P, Osterheld A L, Chen M H, Henderson J R, Knapp D A, Levine M A, Marrs R E, Reed K J, Schneider M B, Vogel D A 1990 Phys. Rev. Lett. 65 1995
Google Scholar
[119] Takács E, Meyer E S, Gillaspy J D, Roberts J R, Chantler C T, Hudson L T, Deslattes R D, Brown C M, Laming J M, Dubau J, Inal M K 1996 Phys. Rev. A 54 1342
Google Scholar
[120] Dyl D, Dziczek D, Piwinski M, Gradziel M, Srivastava R, Dygdala R S, Chwirot S 1999 J. Phys. B: Atom. Mol. Phys. 32 837
Google Scholar
[121] Srivastava R, Blumy K, McEachranz R P, Stauffer A D 1996 J. Phys. B: Atom. Mol. Phys. 29 3513
Google Scholar
[122] Sohn M, Hanne G F 1992 J. Phys. B: Atom. Mol. Phys. 25 4627
Google Scholar
[123] 李博文, 蒋军, 董晨钟, 王建国, 丁晓彬 2009 58 5274
Google Scholar
Li B W, Jiang J, Dong C Z, Wang J G, Ding X B 2009 Acta Phys. Sin. 58 5274
Google Scholar
[124] Whitten B L, Lane N F, Weisheit J C 1984 Phys. Rev. A 29 945
Google Scholar
[125] Murillo M S, Weisheit J C 1998 Phys. Rep. 302 1
Google Scholar
[126] Hu F 2021 Radiat. Phys. Chem. 180 109293
Google Scholar
[127] Pindzola M S, Loch S D, Colgan J, Fontes C J 2008 Phys. Rev. A 77 062707
Google Scholar
[128] Jiang J, Dong C Z, Xie L Y 2014 Chin. Phys. Lett. 31 023401
Google Scholar
-
图 2 Xe原子的激发截面随入射电子能量的变化, 方形为模型A的结果, 三角形为模型B的结果, 带误差条的圆形为Jung 等[115]的实验结果(数据图片来自于文献[116])
Figure 2. Excitation cross section of Xe atom varies with the energy of incident electron. The square represents the results of model A, the triangle represents the results of model B, and the circle with error bars represents the experiment results of Jung et al[115]. From Ref. [116].
图 3 入射电子能量为8 eV时, 不同计算模型下Hg原子1S0 - 3P1电子碰撞激发微分截面, 其中SC为模型I单组态近似的计算结果, 6l为模型II的计算结果, 7l为模型III的计算结果, Experiment为Goeke等[117]的实验结果
Figure 3. Differential cross sections of electron collision excitation of Hg atom 1S0 -3P1 under different calculation models, when the incident electron energy is 8 eV. The SC represents the calculation results of single configuration approximation of model I, 6l represents the calculation results of model II, 7l represents the calculation results of model III, Experiment represents the results of Goeke et al[117].
图 5 入射电子能量为45 eV时, 电子与Ca原子从基态到1P1的碰撞激发微分Stokes参数P1, P2和–P3, 其中$ \kappa $为最大分波量子数, Experiment为Dyl等[120]的实验结果
Figure 5. Collision excitation differential Stokes parameters P1, P2 and –P3 of electron and Ca atom from ground state to 1P1, when the incident electron energy is 45 eV. $ \kappa $ is the maximum partial wave quantum number, and Experiment represents the results of Dyl et al[120].
图 6 入射电子能量为8 eV时, 不同关联模型下计算的Hg原子1S0 -3P1归一化的态多极, 其中SC为利用单组态计算的结果, MC 6l为考虑了6l关联轨道的计算结果, MC 7l为考虑了7l关联轨道的计算结果, Experiment为Sohn等[122]的实验结果
Figure 6. Normalized state multipoles of Hg atom 1S0 -3P1 calculated under different correlation models, when the incident electron energy is 8 eV. The SC represents the calculation results using a single configuration, MC 6l represents the calculation results considering the 6l correlation orbit, MC 7l represents the calculation results considering the 7l correlation orbit, and Experiment refers to the results of Sohn et al[122].
图 7 入射电子能量为15 eV时, 不同关联模型下计算的Hg原子1S0 -3P1归一化的态多极, 其中SC为利用单组态计算的结果, MC 6l为考虑了6l关联轨道的计算结果, MC 7l为考虑了7l关联轨道的计算结果, RDW R 为Srivastava等[121]的理论结果, Experiment为Sohn等[122]的实验结果
Figure 7. Normalized state multipoles of Hg atom 1S0 -3P1 calculated under different correlation models, when the incident electron energy is 15 eV. The SC represents the calculation results using a single configuration, MC 6l represents the calculation results considering the 6l correlation orbit, MC 7l represents the calculation results considering the 7l correlation orbit, RDW R represents the theoretical results of Srivastava et al[121], and Experiment refers to the results of Sohn et al[122].
-
[1] Fontes C J, Sampson D H, Zhang H L 1993 Phys. Rev. A 47 1009
Google Scholar
[2] Fontes C J, Zhang H L, Sampson D H 1999 Phys. Rev. A 59 295
Google Scholar
[3] Ren C, Wu Z W, Jiang J, Xie L Y, Zhang D H, Dong C Z 2018 Phys. Rev. A 98 012711
Google Scholar
[4] Jakubowicz H, Moores D L 1981 J. Phys. B: Atom. Mol. Phys. 14 3733
Google Scholar
[5] Bartschat K, Burke P G 1987 J. Phys. B: Atom. Mol. Phys. 20 3191
Google Scholar
[6] Teng H G 2000 J. Phys. B: Atom. Mol. Phys. 33 L553
Google Scholar
[7] Wu D, Loch S D, Pindzola M S, Balance C P 2012 Phys. Rev. A 85 012711
Google Scholar
[8] Liu P F, Liu Y P, Zeng J L, Yuan J M 2014 Phys. Rev. A 89 042704
Google Scholar
[9] 蒋军2007 硕士学位论文(兰州: 西北师范大学)
Jiang J 2007 M. S. Thesis (Lanzhou: Northwest Normal University
[10] Suckewer S, Hinnov E 1978 Phys. Rev. Lett. 41 756
Google Scholar
[11] Eichler J 1990 Phys. Rep. 193 165
Google Scholar
[12] Vane C R, Datz S, Dittner P F, Giese J, Jones N L, Krause H F, Rosseel T M, Peterson R S 1994 Phys. Rev. A 49 1847
Google Scholar
[13] Wan J J, Dong C Z, Ding X B, Ma X W, Rzadkiewicz J, Stöhlker T, Fritzsche S 2009 Phys. Rev. A 79 022707
Google Scholar
[14] Eichler J, Stöhlker T 2007 Phys. Rep. 439 1
Google Scholar
[15] Biswas S, Monti J M, Tachino C A, Rivarola R D, Tribedi L C 2015 J. Phys. B: At. Mol. Opt. Phys. 48 115206
Google Scholar
[16] Abdurakhmanov I B, Kadyrov A S, Avazbaev S K, Bray I 2016 J. Phys. B: At. Mol. Opt. Phys. 49 115203
Google Scholar
[17] Zhang S B, Wang J G, Janev R K 2010 Phys. Rev. Lett. 104 023203
Google Scholar
[18] Fang X, Liu X W 2013 Mon. Not. R. Astron. Soc. 429 2791
Google Scholar
[19] Menchero L F, Zatsarinny O, Bartschat K 2017 J. Phys. B: At. Mol. Opt. Phys. 50 065203
Google Scholar
[20] Cheung C, Safronova M, Porsev S 2021 Symmetry 13 621
Google Scholar
[21] Wu Z W, He Z M, Tian Z Q, Dong C Z, Fritzsche S 2022 Phys. Rev. A 105 062813
Google Scholar
[22] Li F H, Li J T, Zheng Y, Guo L X, Liu W, Liu Z Y 2023 IEEE T. Plasma Sci. 51 3579
Google Scholar
[23] Yan J, Liu Y P, Hou Y, Gao C, Wu J H, Zeng J L, Yuan J M 2023 Chin. Phys. B 32 063101
Google Scholar
[24] Zeng J L, Jiang X B, Gao C, Wu J H, Yuan J M 2024 Results Phys. 58 107522
Google Scholar
[25] 刘丽娟2012 硕士学位论文(兰州: 西北师范大学)
Liu L J 2012 M. S. Thesis (Lanzhou: Northwest Normal University
[26] Silver J D, Varney A J, Margolis H S, et al. 1994 Rev. Sci. Instrum. 65 1072
Google Scholar
[27] Biedermann C, Förster A, Fußmann G, Radtke R 1997 Phys. Scr. T73 360
Google Scholar
[28] Crespo López-Urrutia J R, Dorn A, Moshammer R, Ullrich J 1999 Phys. Scr. T80B 502
Google Scholar
[29] Beiersdorfer P, Brown G V 2015 Phys. Rev. A 91 032514
Google Scholar
[30] Hu Z M, Han X Y, Li Y M, Kato D, Tong X M, Nakamura N 2012 Phys. Rev. Lett. 108 073002
Google Scholar
[31] Yan C L, Lu Q, Xie Y M, Li B L, Fu N, Zou Y, Chen C, Xiao J 2022 Phys. Rev. A 105 032820
Google Scholar
[32] Dunn G H, Djurić N, Chung Y S, Bannister M, Smith A C H 1995 Nucl. Instr. Meth. Phys. Res. B 98 107
Google Scholar
[33] Taylor P O, Dunn G H 1973 Phys. Rev. A 8 2304
Google Scholar
[34] Rogers W T, Olsen J Q, Dunn G H 1978 Phys. Rev. A 18 1353
Google Scholar
[35] Huber B A, Ristori C, Hervieux P A, Maurel M, Guet C, Andrä H J 1991 Phys. Rev. Lett. 67 1407
Google Scholar
[36] Huber B A, Ristori C, Guet C, Küchler D, Johnson W R 1994 Phys. Rev. Lett. 73 2301
Google Scholar
[37] Srigengan B, Williams I D, Newell W R 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L605
Google Scholar
[38] Bannister M E, Djurić N, Woitke O, Dunn G H, Chung Y S, Smith A C H, Wallbank B, Berrington K A 1999 Int. J. Mass Spectrom. 192 39
Google Scholar
[39] Phaneuf R A, Havener C C, Dunn G H, Müller A 1999 Rep. Prog. Phys. 62 1143
Google Scholar
[40] Wallbank B, Bannister M E, Krause H F, Chung Y S, Smith A C H, Djurić N, Dunn G H 2007 Phys. Rev. A 75 052703
Google Scholar
[41] Smirnov Yu M 2015 J. Phys. B: At. Mol. Opt. Phys. 48 165204
Google Scholar
[42] Smirnov Yu M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 175204
Google Scholar
[43] Smirnov Yu M 2017 Russ. J. Phys. Chem. B 11 873
Google Scholar
[44] Huang Z K, Wen W Q, Wang S X, et al. 2020 Phys. Rev. A 102 062823
Google Scholar
[45] Wang S X, Huang Z K, Wen W Q, et al. 2022 Phys. Rev. A 106 042808
Google Scholar
[46] 邵林, 黄忠魁, 汶伟强, 汪书兴, 黄厚科, 马万路, 刘畅, 汪寒冰, 陈冬阳, 刘鑫, 周晓鹏, 赵冬梅, 张少锋, 朱林繁, 马新文 2024 73 123402
Google Scholar
Shao L, Huang Z K, Wen W Q, Wang S X, Huang H K, Ma W L, Liu C, Wang H B, Chen D Y, Liu X, Zhou X P, Zhao D M, Zhang S F, Zhu L F, Ma X W 2024 Acta Phys. Sin. 73 123402
Google Scholar
[47] Liu X J, Zhu L F, Yuan Z S, Li W B, Cheng H D, Huang Y P, Zhong Z P, Xu K Z, Li J M 2003 Phys. Rev. Lett. 91 193203
Google Scholar
[48] Du X J, Xu Y C, Wang L H, Li T J, Ma Z R, Wang S X, Zhu L F 2022 Phys. Rev. A 105 012812
Google Scholar
[49] Wang D H, Wang S X, Nie Z W, Wang L H, Xu Y C, Du X J, Zhu L F 2022 Plasma Sources Sci. Technol. 31 045012
Google Scholar
[50] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95
Google Scholar
[51] Xia Z H, Ren B, Zhang R T, Wei L, Han J, Meng T, Wang J, Ma P, Zhang Y, Tu B, Xiao J, Yao K, Zou Y, Zhu X L, Guo D L, Ma X, Wei B 2022 Astrophysical J. 933 207
Google Scholar
[52] Ren B, Ma P, Zhang Y, Wei L, Han J, Xia Z, Wang J, Meng T, Yu W, Zou Y, Yang C L, Wei B 2022 Phys. Rev. A 106 012805
Google Scholar
[53] Uhlmann L J, Dall R G, Truscott A G, Hoogerland M D, Baldwin K G H, Buckman S J 2005 Phys. Rev. Lett. 94 173201
Google Scholar
[54] Łukomski M, MacAskill J A, Seccombe D P, McGrath C, Sutton S, Teeuwen J, Kedzierski W, Reddish T J, McConkey J W, van Wijngaarden W A 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3535
Google Scholar
[55] Byron L J, Dall R G, Truscott A G 2010 Phys. Rev. A 81 013405
Google Scholar
[56] Daw A, Gardner L D, Janzen P H, Kohl J L 2006 Phys. Rev. A 73 032709
Google Scholar
[57] Knehr E, Kuzmin A, Doerner S, Wuensch S, Ilin K, Schmidt H, Siegel M 2020 Appl. Phys. Lett. 117 132602
Google Scholar
[58] Heddle D W O, Samuel M J 1970 J. Phys. B: Atom. Mol. Phys. 3 1593
Google Scholar
[59] Stewart Jr M D, Chilton J E, Boffard J B, Lin C C 2002 Phys. Rev. A 65 032704
Google Scholar
[60] McCarthy I E, Weigold E 1988 Rep. Prog. Phys. 51 299
Google Scholar
[61] McCarthy I E, Weigold E 1991 Rep. Prog. Phys. 54 789
Google Scholar
[62] Fursa D V, Bray I 1995 Phys. Rev. A 52 1279
Google Scholar
[63] Bray I, Fursa D V 1996 Phys. Rev. Lett. 76 2674
Google Scholar
[64] Bartschat K, Zatsarinny O 2015 Phys. Scr. 90 054006
Google Scholar
[65] Zhao G P, Liu L, Chang Z, Wang J G, Janev R K 2018 J. Phys. B: At. Mol. Opt. Phys. 51 085201
Google Scholar
[66] Liu Y D, Jia C C, Ma M X, Gao X, Liu L, Wu Y, Chen X J, Wang J G 2024 Chin. Phys. B 33 083401
Google Scholar
[67] 杨威, 蔡晓红, 于得洋 2005 54 2128
Google Scholar
Yang W, Cai X H, Yu D Y 2005 Acta Phys. Sin. 54 2128
Google Scholar
[68] Whiteford A D, Badnell N R, Ballance C P, O’Mullane M G, Summers H P, Thomas A L 2001 J. Phys. B: At. Mol. Opt. Phys. 34 3179
Google Scholar
[69] Fan Q P, Wang W H, Hu F, Cao L F, Zhang Q Q, Liu Y W, Jiang G 2014 Chin. Phys. B 23 113401
Google Scholar
[70] Chen Y Q, Jiang X W, Yao L F, Jiang W, Liu H N, Zhang Y 2023 Plasma Sources Sci. Technol. 32 045017
Google Scholar
[71] Bar-Shalom A, Klapisch M, Oreg J 1988 Phys. Rev. A 38 1773
Google Scholar
[72] Meng F C, Chen C Y, Wang Y S, Zou Y M 2007 Chinese Phys. Lett. 24 3404
Google Scholar
[73] Gu M F 2008 Can. J. Phys. 86 675
Google Scholar
[74] Podpaly Y, Clementson J, Beiersdorfer P, Williamson J, Brown G V, Gu M F 2009 Phys. Rev. A 80 052504
Google Scholar
[75] Ma Y L, Liu L, Xie L Y, Wu Y, Zhang D H, Dong C Z, Qu Y Z, Wang J G 2022 Chin. Phys. B 31 043401
Google Scholar
[76] Zhang C Y, Wu S J, Wang K, Si R, Yao K, Huang Z K, Wen W Q, Ma X W, Chen C Y, Badnell N R 2023 Phys. Rev. A 108 022801
Google Scholar
[77] 杜贵锋2011 硕士学位论文(兰州: 西北师范大学)
Du G F 2011 M. S. Thesis (Lanzhou: Northwest Normal University
[78] 杨宁选2009 硕士学位论文(兰州: 西北师范大学)
Yang N X 2009 M. S. Thesis (Lanzhou: Northwest Normal University
[79] Macek J, Jaecks D H 1971 Phys. Rev. A 4 2288
Google Scholar
[80] Bartschat K, Blum K, Hanne G F, Kessler J 1981 J. Phys. B: Atom. Mol. Phys. 14 3761
Google Scholar
[81] Bartschat K, Scott N S, Blum K, Burke P G 1984 J. Phys. B: Atom. Mol. Phys. 17 269
Google Scholar
[82] Khalid S M, Kleinpoppen H 1984 J. Phys. B: Atom. Mol. Phys. 17 243
Google Scholar
[83] Raeker A, Blum K, Bartschat K 1993 J. Phys. B: Atom. Mol. Phys. 26 1491
Google Scholar
[84] Kłosowski Ł, Piwiski M, Dziczek D, Wiśniewska K, Chwirot S 2007 Meas. Sci. Technol. 18 3801
Google Scholar
[85] Kłosowski Ł, Piwiski M, Dziczek D, Pleskacz K, Chwirot S 2009 Phys. Rev. A 80 062709
Google Scholar
[86] Hussey M, Murray A, MacGillivray W, King G C 2007 Phys. Rev. Lett. 99 133202
Google Scholar
[87] Percival A K, Jhumka S, Hussey M, Murray A J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 105203
Google Scholar
[88] Polasik M 1989 Phys. Rev. A 39 616
Google Scholar
[89] Wu Z W, Tian Z Q, Dong C Z, Surzhykov A, Fritzsche S 2023 New J. Phys. 25 093039
Google Scholar
[90] Ding X B, Koike F, Murakami I, Kato D, Sakaue H A, Dong C Z, Nakamura N 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035003
Google Scholar
[91] Wang K, Li S, Jönsson P, Fu N, Dang W, Guo X L, Chen C Y, Yan J, Chen Z B, Si R 2017 J. Quant. Spectrosc. Radiat. Transf. 187 375
Google Scholar
[92] 颉录有2008 博士学位论文(兰州: 西北师范大学)
Xie L Y 2008 Ph. D. Dissertation (Lanzhou: Northwest Normal University
[93] 武中文2012 硕士学位论文(兰州: 西北师范大学)
Wu Z W 2012 M. S. Thesis 2012 (Lanzhou: Northwest Normal University
[94] Parpia F A, Fischer C F, Grant I P 1996 Compt. Phys. Commun. 94 249
Google Scholar
[95] Jönsson P, Gaigalas G, Bieroń J, Fischer C F, Grant I P 2013 Compt. Phys. Commun. 184 2197
Google Scholar
[96] Fischer C F, Gaigalas G, Jönsson P, Bieroń J 2019 Compt. Phys. Commun. 237 184
Google Scholar
[97] Fritzsche S, Fischer C F, Dong C Z 2000 Compt. Phys. Commun. 124 340
Google Scholar
[98] Fritzsche S 2012 Compt. Phys. Commun. 183 1525
Google Scholar
[99] Carse G D, Walker D W 1973 J. Phys. B: Atom. Mol. Phys. 6 2529
Google Scholar
[100] Walker D W 1974 J. Phys. B: Atom. Mol. Phys. 7 97
Google Scholar
[101] Dong C Z, Xie L Y, Zhou X X, Ma X W, Fritzsche S 2003 Hyperfine Interact. 146 161
Google Scholar
[102] Li J G, Dong C Z, Yu Y J, Ding X B, Fritzsche S, Fricke B 2007 Sci. China Phys. Mech. 50 707
Google Scholar
[103] Xie L Y, Wang J G, Janev R K, Qu Y Z, Dong C Z 2012 Eur. Phys. J. D 66 125
Google Scholar
[104] Grant I P, McKenzie B J, Norrington P H, Mayers D F, Pyper N C 1980 Compt. Phys. Commun. 21 207
Google Scholar
[105] Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Compt. Phys. Commun. 55 425
Google Scholar
[106] Jiang J, Dong C Z, Xie L Y, Wang J G, Yan J, Fritzsche S 2007 Chin. Phys. Lett. 24 691
Google Scholar
[107] Li B W, Dong C Z, Jiang J, Wang J G 2010 Eur. Phys. J. D 59 201
Google Scholar
[108] Jiang J, Dong C Z, Xie L Y, Wang J G 2008 Phys. Rev. A 78 022709
Google Scholar
[109] 马小云2013 硕士学位论文(兰州: 西北师范大学)
Ma X Y 2013 M. S. Thesis (Lanzhou: Northwest Normal University
[110] Grant I P 1970 Adv. Phys. 19 747
Google Scholar
[111] Rodrigues G C, Ourdane M A, Bieroń J, Indelicato P, Lindroth E. 2000 Phys. Rev. A 63 012510
Google Scholar
[112] Dong C Z, Fritzsche S 2005 Phys. Rev. A 72 012507
Google Scholar
[113] Fischer C F, Godefroid M, Brage T, Jönsson P, Gaigalas G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 182004
Google Scholar
[114] Andersen N, Broad J T, Campbell E E B, Gallagher J W, Hertel I V 1997 Phys. Rep. 278 107
Google Scholar
[115] Jung R O, Boffard J B, Anderson L W, Lin C C 2005 Phys. Rev. A 72 022723
Google Scholar
[116] Jiang J, Dong C Z, Xie L Y, Zhou X X, Wang J G 2008 J. Phys. B: At. Mol. Opt. Phys. 41 245204
Google Scholar
[117] Goeke J, Hanne G F, Kessler J 1989 J. Phys. B: Atom. Mol. Phys. 22 1075
Google Scholar
[118] Beiersdorfer P, Osterheld A L, Chen M H, Henderson J R, Knapp D A, Levine M A, Marrs R E, Reed K J, Schneider M B, Vogel D A 1990 Phys. Rev. Lett. 65 1995
Google Scholar
[119] Takács E, Meyer E S, Gillaspy J D, Roberts J R, Chantler C T, Hudson L T, Deslattes R D, Brown C M, Laming J M, Dubau J, Inal M K 1996 Phys. Rev. A 54 1342
Google Scholar
[120] Dyl D, Dziczek D, Piwinski M, Gradziel M, Srivastava R, Dygdala R S, Chwirot S 1999 J. Phys. B: Atom. Mol. Phys. 32 837
Google Scholar
[121] Srivastava R, Blumy K, McEachranz R P, Stauffer A D 1996 J. Phys. B: Atom. Mol. Phys. 29 3513
Google Scholar
[122] Sohn M, Hanne G F 1992 J. Phys. B: Atom. Mol. Phys. 25 4627
Google Scholar
[123] 李博文, 蒋军, 董晨钟, 王建国, 丁晓彬 2009 58 5274
Google Scholar
Li B W, Jiang J, Dong C Z, Wang J G, Ding X B 2009 Acta Phys. Sin. 58 5274
Google Scholar
[124] Whitten B L, Lane N F, Weisheit J C 1984 Phys. Rev. A 29 945
Google Scholar
[125] Murillo M S, Weisheit J C 1998 Phys. Rep. 302 1
Google Scholar
[126] Hu F 2021 Radiat. Phys. Chem. 180 109293
Google Scholar
[127] Pindzola M S, Loch S D, Colgan J, Fontes C J 2008 Phys. Rev. A 77 062707
Google Scholar
[128] Jiang J, Dong C Z, Xie L Y 2014 Chin. Phys. Lett. 31 023401
Google Scholar
Catalog
Metrics
- Abstract views: 958
- PDF Downloads: 95
- Cited By: 0