Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical calculations on isotope shifts of Mg I by using relativistic multiconfiguration Dirac-Hartree-Fock method

Yu Geng-Hua Liu Hong Zhao Peng-Yi Xu Bing-Ming Gao Dang-Li Zhu Xiao-Ling Yang Wei

Citation:

Theoretical calculations on isotope shifts of Mg I by using relativistic multiconfiguration Dirac-Hartree-Fock method

Yu Geng-Hua, Liu Hong, Zhao Peng-Yi, Xu Bing-Ming, Gao Dang-Li, Zhu Xiao-Ling, Yang Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The isotope shift parameters for the atomic transitions 1S0-1P1 and 1S0-3P1 of Mg are calculated by the relativistic multiconfiguration Dirac-Hartree-Fock (MCDHF) method, including the normal mass shift (NMS) coefficients, the specific mass shift (SMS) coefficients and the field shift (FS) factors. The detailed calculations of the isotope shifts for the three stable isotopes 24Mg, 25Mg and 26Mg are also carried out, in which the GRASP2K package is used together with another modified relativistic isotope shift computation code package RIS3. The two-parameter Fermi model is used here to describe the nuclear charge distribution in order to calculate the field shift by the first-order perturbation. A restricted double excitation mode is used in our calculations, one electron is excited from the two electrons in the 3s shell (3s2), another electron is excited from the eight electrons in the 2s or 2p shells (2s22p6), and the two electrons in the 1s shell (1s2) are not excited. The active configurations are expanded from the occupied orbitals to some active sets layer by layer, each correlation layer is numbered by the principal quantum numbers n (n= 3, 4, 5, …) and contains the corresponding orbitals s, p, d, …. The active configurations with the mixing coefficients in the added layer can be optimized by the MCDHF calculations. In this work, the atomic state functions are optimized simultaneously by the self-consistent field method and the relativistic configuration interaction approach in which the Breit interaction is taken into account perturbatively as well. The maximum principal quantum number n equals 10 and the largest orbital quantum number lmax is g. In our calculations, the NMS coefficients are -576.8 and -359.9 GHz·u, the SMS coefficients are 133.9 and -479.6 GHz·u, and the FS factors are -62.7 and -78.0 MHz·fm-2 for the 1S0-1P1 and 1S0-3P1 transitions of Mg, respectively. The difference between our isotope shift calculations and the previous experimental measurements is in a range from 6 MHz to 20 MHz with the relative error range from 0.6% to 1.3%, which shows that our results are in good agreement with experimental values. Our calculations are also coincident with other theoretical results. The isotope shift parameters provided here can be applied to the quick calculations of isotope shifts for the short-lived Mg isotopes, including 20-23Mg and 27-40Mg, and can be referred to for the corresponding isotope shift experiments. The methods used here canbe applied to calculating the isotope shifts and the atomic spectroscopic structures for other Mg-like ions with twelve extranuclear electrons.
      Corresponding author: Yu Geng-Hua, genghuayu@aliyun.com
    • Funds: Project supported by the National Natural Science Foundations of China (Grant Nos. 11304093, 11604253), the Plan Project of Youth Science and Technology New Star of Shaanxi Province (Grant No. 2015KJXX-33), and the Fund of the Scientific Research Foundation of Sichuan Provincial Department of Education (Grant No. 14ZB0375).
    [1]

    Anders M, Trezzi D, Menegazzo R, Aliotta M, Bellini A, Bemmerer D, Broggini C, Caciolli A, Corvisiero P, Costantini H, Davinson T, Elekes Z, Erhard M, Formicola A, Flöp Z, Gervino G, Guglielmetti A, Gustavino C, Gyrky G, Junker M, Lemut A, Marta M, Mazzocchi C, Prati P, Rossi-Alvarez C, Scott DA, Somorjai E, Straniero O, Szcs T 2014 Phys. Rev. Lett. 113 042501

    [2]

    Nörtershäuser W, Neff T, Sanchez R, Sick I 2011 Phys. Rev. C 84 024307

    [3]

    Kozhedub Y S, Andreev O V, Shabaev V M, Tupitsyn I I, Brandau C, Kozhuharov C, Plunien G, Stöhlker T 2008 Phys. Rev. A 77 032501

    [4]

    Hu M H, Wang Z W, Zeng F W, Wang T, Wang J 2011 Chin. Phys. B 20 083101

    [5]

    Pachucki K, Yerokhin V A 2015 J. Phys. Chem. Ref. Data 44 83

    [6]

    Xiong Z Y, Yao Z W, Wang L, Li R B, Wang J, Zhan M S 2011 Acta Phys. Sin. 60 113201 (in Chinese) [熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生 2011 60 113201]

    [7]

    Borremans D, Balabanski D L, Blaum K, Geithner W, Gheysen S, Himpe P, Kowalska M, Lassen J, Lievens P, Mallion S, Neugart R, Neyens G, Vermeulen N, Yordanov D 2005 Phys. Rev. C 72 044309

    [8]

    Drake G W F, Nörtershäuser W, Yan Z C 2005 Can. J. Phys. 83 311

    [9]

    Nörtershäuser W, Tiedemann D, Žáková M, Andjelkovic Z, Blaum K, Bissell M L, Cazan R, Drake G W F, Geppert C, Kowalska M, Krämer J, Krieger A, Neugart R, Sánchez R, Schmidt-Kaler F, Yan Z C, Yordanov D T, Zimmermann C 2009 Phys. Rev. Lett. 102 062503

    [10]

    Takamine A, Wada M, Okada K, Sonoda T, Schury P, Nakamura T, Kanai Y, Kubo T, Katayama I, Ohtani S, Wollnik H, Schuessler H A 2014 Phys. Rev. Lett. 112 162502

    [11]

    Paez E, Arnold K J, Hajiyev E, Porsev S G, Dzuba V A, Safronova U I, Safronova M S, Barrett M D 2016 Phys. Rev. A 93 042112

    [12]

    Safronova M S, Safronova U I, Clark C W 2015 Phys. Rev. A 91 022504

    [13]

    Sahoo B K 2010 J. Phys. B At. Mol. Opt. Phys. 43 231001

    [14]

    Berengut J C, Dzuba V A, Flambaum V V, Kozlov M G 2004 Phys. Rev. A 69 044102

    [15]

    Steenstrup M P, Brusch A, Jensen B B, Hald J, Thomsen J W 2010 Phys. Rev. A 82 054501

    [16]

    Nazé C, Gaidamauskas E, Gaigalas G, Godefroid M, Jönsson P 2013 Comput. Phys. Commun. 184 2187

    [17]

    Tupitsyn I I, Shabaev V M, López-Urrutia J R C, Draganic I, Orts R S, Ullrich J 2003 Phys. Rev. A 68 022511

    [18]

    Yu G H, Geng Y G, Zhou C, Duan C B, Li L, Chai R P, Yang Y M 2015 Chin. Phys. Lett. 32 073102

    [19]

    Jönsson P, He X, Fischer C F, Grant I 2007 Comput. Phys. Commun. 177 597

    [20]

    Jönsson P, Gaigalas G, Bierón J, Fischer C F, Grant I 2013 Comput. Phys. Commun. 184 2197

    [21]

    Radžiūtė L, Gaidamauskas E, Gaigalas G, Li J G, Dong C Z, Jönsson P 2015 Chin. Phys. B 24 043103

    [22]

    Parpia F A, Mohanty A K 1992 Phys. Rev. A 46 3735

    [23]

    Filippin L, Godefroid M, Ekman J, Jönsson P 2016 Phys. Rev. A 93 062512

    [24]

    Berengut J C, Flambaum V V, Kozlov M G 2005 Phys. Rev. A 72 044501

    [25]

    Konovalova E A, Kozlov M G 2015 Phys. Rev. A 92 042508

    [26]

    Korol V A, Kozlov M G 2007 Phys. Rev. A 76 022103

    [27]

    Yordanov D T, Bissell M L, Blaum K, de Rydt M, Geppert C, Kowalska M, Krämer J, Kreim K, Krieger A, Lievens P, Neff T, Neugart R, Neyens G, Nörtershäuser W, Sánchez R, Vingerhoets P 2012 Phys. Rev. Lett. 108 042504

    [28]

    Beverini N, Maccioni E, Pereira D, Strumia F, Vissani G, Wang Y Z 1990 Opt. Commun. 77 299

    [29]

    Sterr U, Sengstock K, Mller J H, Ertmer W 1993 Appl. Phys. B Photophys. Laser Chem. 56 62

    [30]

    Salumbides E J, Hannemann S, Eikema K S E, Ubachs W 2006 Mon. Not. R. Astron. Soc. 373 41

    [31]

    Hallstadius L 1979 Z. Phys. A 291 203

    [32]

    Boiteux S L, Klein A, Leite J R R, Ducloy M 1988 J. Phys. France 49 885

    [33]

    Huang K N, Aoyagi M, Chen M, Crasemann B 1976 At. Data Nucl. Data Tables 18 243

    [34]

    Lunney D, Pearson J M, Thibault C 2003 Rev. Mod. Phys. 75 1021

    [35]

    Liang Z Y, Liu J H, Liu M, Wang N 2011 Nucl. Phys. Rev. 28 257 (in Chinese) [梁祚盈, 刘俊华, 刘敏, 王宁 2011 原子核物理评论 28 257]

    [36]

    Wang N, Liang Z Y, Liu M, Wu X Z 2010 Phys. Rev. C 82 044304

    [37]

    Zhang P P, Zhong Z X, Yan Z C, Shi T Y 2015 Chin. Phys. B 24 033101

    [38]

    Yan Z C, Drake G W F 2003 Phys. Rev. Lett. 91 113004

    [39]

    Mohr P J, Plunien G, Soff G 1998 Physics Reports 293 227

    [40]

    Volotka A V, Glazov D A, Shabaev V M, Tupitsyn I I, Plunien G 2015 Phys. Rev. Lett. 112 253004

    [41]

    Yan Z C, Drake G W F 2002 Phys. Rev. A 66 042504

    [42]

    Yan Z C, Nörtershäuser W, Drake G W F 2008 Phys. Rev. Lett. 100 243002

  • [1]

    Anders M, Trezzi D, Menegazzo R, Aliotta M, Bellini A, Bemmerer D, Broggini C, Caciolli A, Corvisiero P, Costantini H, Davinson T, Elekes Z, Erhard M, Formicola A, Flöp Z, Gervino G, Guglielmetti A, Gustavino C, Gyrky G, Junker M, Lemut A, Marta M, Mazzocchi C, Prati P, Rossi-Alvarez C, Scott DA, Somorjai E, Straniero O, Szcs T 2014 Phys. Rev. Lett. 113 042501

    [2]

    Nörtershäuser W, Neff T, Sanchez R, Sick I 2011 Phys. Rev. C 84 024307

    [3]

    Kozhedub Y S, Andreev O V, Shabaev V M, Tupitsyn I I, Brandau C, Kozhuharov C, Plunien G, Stöhlker T 2008 Phys. Rev. A 77 032501

    [4]

    Hu M H, Wang Z W, Zeng F W, Wang T, Wang J 2011 Chin. Phys. B 20 083101

    [5]

    Pachucki K, Yerokhin V A 2015 J. Phys. Chem. Ref. Data 44 83

    [6]

    Xiong Z Y, Yao Z W, Wang L, Li R B, Wang J, Zhan M S 2011 Acta Phys. Sin. 60 113201 (in Chinese) [熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生 2011 60 113201]

    [7]

    Borremans D, Balabanski D L, Blaum K, Geithner W, Gheysen S, Himpe P, Kowalska M, Lassen J, Lievens P, Mallion S, Neugart R, Neyens G, Vermeulen N, Yordanov D 2005 Phys. Rev. C 72 044309

    [8]

    Drake G W F, Nörtershäuser W, Yan Z C 2005 Can. J. Phys. 83 311

    [9]

    Nörtershäuser W, Tiedemann D, Žáková M, Andjelkovic Z, Blaum K, Bissell M L, Cazan R, Drake G W F, Geppert C, Kowalska M, Krämer J, Krieger A, Neugart R, Sánchez R, Schmidt-Kaler F, Yan Z C, Yordanov D T, Zimmermann C 2009 Phys. Rev. Lett. 102 062503

    [10]

    Takamine A, Wada M, Okada K, Sonoda T, Schury P, Nakamura T, Kanai Y, Kubo T, Katayama I, Ohtani S, Wollnik H, Schuessler H A 2014 Phys. Rev. Lett. 112 162502

    [11]

    Paez E, Arnold K J, Hajiyev E, Porsev S G, Dzuba V A, Safronova U I, Safronova M S, Barrett M D 2016 Phys. Rev. A 93 042112

    [12]

    Safronova M S, Safronova U I, Clark C W 2015 Phys. Rev. A 91 022504

    [13]

    Sahoo B K 2010 J. Phys. B At. Mol. Opt. Phys. 43 231001

    [14]

    Berengut J C, Dzuba V A, Flambaum V V, Kozlov M G 2004 Phys. Rev. A 69 044102

    [15]

    Steenstrup M P, Brusch A, Jensen B B, Hald J, Thomsen J W 2010 Phys. Rev. A 82 054501

    [16]

    Nazé C, Gaidamauskas E, Gaigalas G, Godefroid M, Jönsson P 2013 Comput. Phys. Commun. 184 2187

    [17]

    Tupitsyn I I, Shabaev V M, López-Urrutia J R C, Draganic I, Orts R S, Ullrich J 2003 Phys. Rev. A 68 022511

    [18]

    Yu G H, Geng Y G, Zhou C, Duan C B, Li L, Chai R P, Yang Y M 2015 Chin. Phys. Lett. 32 073102

    [19]

    Jönsson P, He X, Fischer C F, Grant I 2007 Comput. Phys. Commun. 177 597

    [20]

    Jönsson P, Gaigalas G, Bierón J, Fischer C F, Grant I 2013 Comput. Phys. Commun. 184 2197

    [21]

    Radžiūtė L, Gaidamauskas E, Gaigalas G, Li J G, Dong C Z, Jönsson P 2015 Chin. Phys. B 24 043103

    [22]

    Parpia F A, Mohanty A K 1992 Phys. Rev. A 46 3735

    [23]

    Filippin L, Godefroid M, Ekman J, Jönsson P 2016 Phys. Rev. A 93 062512

    [24]

    Berengut J C, Flambaum V V, Kozlov M G 2005 Phys. Rev. A 72 044501

    [25]

    Konovalova E A, Kozlov M G 2015 Phys. Rev. A 92 042508

    [26]

    Korol V A, Kozlov M G 2007 Phys. Rev. A 76 022103

    [27]

    Yordanov D T, Bissell M L, Blaum K, de Rydt M, Geppert C, Kowalska M, Krämer J, Kreim K, Krieger A, Lievens P, Neff T, Neugart R, Neyens G, Nörtershäuser W, Sánchez R, Vingerhoets P 2012 Phys. Rev. Lett. 108 042504

    [28]

    Beverini N, Maccioni E, Pereira D, Strumia F, Vissani G, Wang Y Z 1990 Opt. Commun. 77 299

    [29]

    Sterr U, Sengstock K, Mller J H, Ertmer W 1993 Appl. Phys. B Photophys. Laser Chem. 56 62

    [30]

    Salumbides E J, Hannemann S, Eikema K S E, Ubachs W 2006 Mon. Not. R. Astron. Soc. 373 41

    [31]

    Hallstadius L 1979 Z. Phys. A 291 203

    [32]

    Boiteux S L, Klein A, Leite J R R, Ducloy M 1988 J. Phys. France 49 885

    [33]

    Huang K N, Aoyagi M, Chen M, Crasemann B 1976 At. Data Nucl. Data Tables 18 243

    [34]

    Lunney D, Pearson J M, Thibault C 2003 Rev. Mod. Phys. 75 1021

    [35]

    Liang Z Y, Liu J H, Liu M, Wang N 2011 Nucl. Phys. Rev. 28 257 (in Chinese) [梁祚盈, 刘俊华, 刘敏, 王宁 2011 原子核物理评论 28 257]

    [36]

    Wang N, Liang Z Y, Liu M, Wu X Z 2010 Phys. Rev. C 82 044304

    [37]

    Zhang P P, Zhong Z X, Yan Z C, Shi T Y 2015 Chin. Phys. B 24 033101

    [38]

    Yan Z C, Drake G W F 2003 Phys. Rev. Lett. 91 113004

    [39]

    Mohr P J, Plunien G, Soff G 1998 Physics Reports 293 227

    [40]

    Volotka A V, Glazov D A, Shabaev V M, Tupitsyn I I, Plunien G 2015 Phys. Rev. Lett. 112 253004

    [41]

    Yan Z C, Drake G W F 2002 Phys. Rev. A 66 042504

    [42]

    Yan Z C, Nörtershäuser W, Drake G W F 2008 Phys. Rev. Lett. 100 243002

  • [1] Qi Gang, Huang Yin-Bo, Ling Fei-Tong, Yang Jia-Qi, Huang Jun, Yang Tao, Zhang Lei-Lei, Lu Xing-Ji, Yuan Zi-Hao, Cao Zhen-Song. Measurement of Rb isotope ratio by atomic absorption spectroscopy with multi-microchannel array structure cavity. Acta Physica Sinica, 2023, 72(5): 053201. doi: 10.7498/aps.72.20221963
    [2] Hua Ya-Wen, Liu Yi-Liang, Wan Ming-Jie. Theoretical study on electronic structure and transition properties of excited states for SeH+ anion. Acta Physica Sinica, 2020, 69(15): 153101. doi: 10.7498/aps.69.20200278
    [3] Zhang Xiang, Lu Ben-Quan, Li Ji-Guang, Zou Hong-Xin. Theoretical investigation on hyperfine structure and isotope shift for 5d106s 2S1/2→5d96s2 2D5/2 clock transition in Hg+. Acta Physica Sinica, 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [4] Luo Hua-Feng, Wan Ming-Jie, Huang Duo-Hui. Potential energy curves and transition properties for the ground and excited states of BH+ cation. Acta Physica Sinica, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [5] Yu Geng-Hua, Yan Hui, Gao Dang-Li, Zhao Peng-Yi, Liu Hong, Zhu Xiao-Ling, Yang Wei. Calculationof isotope shift of Mg+ ion by using the relativistic multi-configuration interaction method. Acta Physica Sinica, 2018, 67(1): 013101. doi: 10.7498/aps.67.20171817
    [6] Liang Qin, Jeff Z. Y. Chen. Recent theoretical development in confined liquid-crystal polymers. Acta Physica Sinica, 2016, 65(17): 174201. doi: 10.7498/aps.65.174201
    [7] Jiang Ying, Chen Jeff Z. Y.. The applications of the wormlike chain model on polymer physics. Acta Physica Sinica, 2016, 65(17): 178201. doi: 10.7498/aps.65.178201
    [8] Fan Juan-Juan, Yu Xiu-Ling, Liang Xue-Mei. Self-consistent field simulation of hierarchical self-assembly structures from AB/CD block copolymer blends. Acta Physica Sinica, 2013, 62(15): 158105. doi: 10.7498/aps.62.158105
    [9] Wang Jie-Min, Zhang Lei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. A Multi-reference configuration interaction investigation of the X2+and A2 low-lying electronic states of AsO+ isotope ion. Acta Physica Sinica, 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [10] Fan Feng-Ying, Wang Li-Jun. Influences of laser bandwidth and intensity on laser ionization of isotope atoms. Acta Physica Sinica, 2011, 60(9): 093203. doi: 10.7498/aps.60.093203
    [11] Chen Xing-Peng, Wang Nan. Ground state properties of Rn isotopes within the relativistic mean field theory. Acta Physica Sinica, 2011, 60(11): 112101. doi: 10.7498/aps.60.112101
    [12] Linghu Rong-Feng, Xu Mei, Wang Xiao-Lu, Lü Bing, Yang Xiang-Dong. The effect of symmetrical isotopic substitution in Ne-H2 collision. Acta Physica Sinica, 2010, 59(4): 2416-2422. doi: 10.7498/aps.59.2416
    [13] Cheng Cheng, Zhang Xiao-Le, Qing Bo, Li Jia-Ming, Gao Xiang. Full-relativistic multi-configuration self-consistent calculation of atomic structures and physical properties——Construction of “quasi-complete basis sets” and configuration interaction calculations. Acta Physica Sinica, 2010, 59(7): 4547-4555. doi: 10.7498/aps.59.4547
    [14] Yu Chun-Ri, Wang Rong-Kai, Zhang Jie, Yang Xiang-Dong. Differential cross sections for collisions between He isotope atoms and HBr molecules. Acta Physica Sinica, 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [15] Li Ming, Zhu Yue-Jin. Phase diagram of diblock copolymer confined in a cylindrical nanopore with polymer-grafted surface. Acta Physica Sinica, 2008, 57(12): 7555-7564. doi: 10.7498/aps.57.7555
    [16] Zheng Li-Ping, Zhang Hu-Yong, Wang Ting-Tai, Ma Yu-Gang. Analysis of the contributions of PKA and SKA to the isotope enrichment. Acta Physica Sinica, 2004, 53(5): 1577-1582. doi: 10.7498/aps.53.1577
    [17] MA HONG-LIANG, TANG JIA-YONG. MEASUREMENT OF ISOTOPE SHIFTS AMONG 142—146,148,150Nd+ BY USING COLLINEAR FAST-ION-BEAM LASER SPECTROSCOPY. Acta Physica Sinica, 2001, 50(3): 453-456. doi: 10.7498/aps.50.453
    [18] MENG XU-JUN, ZONG XIAO-PING, BAI YUN, SUN YONG-SHENG, ZHANG JING-LIN. SELF-CONSISTENT CALCULATION OF ATOMIC STRUCTURE FOR MIXTURE. Acta Physica Sinica, 2000, 49(11): 2133-2138. doi: 10.7498/aps.49.2133
    [19] DAI CHANG-JIAN, XU CHANG-JIANG. SELECTIVE PHOTOIONIZATION OF ISOTOPIC ATOMS WITH PULSED LASERS. Acta Physica Sinica, 1994, 43(3): 356-368. doi: 10.7498/aps.43.356
    [20] ZHU XI-WEN. LASER ISOTOPE ENRICHMENT VIA MAGNETIC DEFLECTION OF OPTICALLY POLARIZED ATOMIC BEAM. Acta Physica Sinica, 1984, 33(11): 1605-1609. doi: 10.7498/aps.33.1605
Metrics
  • Abstract views:  6226
  • PDF Downloads:  190
  • Cited By: 0
Publishing process
  • Received Date:  01 January 2017
  • Accepted Date:  01 January 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map