Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tunneling dynamics of tunable spin-orbit coupled Bose-Einstein condensates

Ma Yun-E Qiao Xin Gao Rui Liang Jun-Cheng Zhang Ai-Xia Xue Ju-Kui

Citation:

Tunneling dynamics of tunable spin-orbit coupled Bose-Einstein condensates

Ma Yun-E, Qiao Xin, Gao Rui, Liang Jun-Cheng, Zhang Ai-Xia, Xue Ju-Kui
PDF
HTML
Get Citation
  • We theoretically study the band structure, tunneling dynamics, and tunneling probability of tunable spin-orbit-coupled Bose-Einstein condensates under the periodic driving of Raman coupling. The time-independent Floquet Hamiltonian is obtained in the high-frequency approximation. It is found that the periodic driving can effectively tune spin-orbit coupling and nonlinear interaction. The system is mapped to a standard nonlinear two-level model, and the critical condition for the appearance of the loop in energy band structure and the width of the loop are obtained analytically. When the interspecies atomic interaction is equal to the intraspecies atomic interaction, there is no loop. However, when the intraspecies atomic interaction is smaller (larger) than the interspecies atomic interaction, the loop appears in the lower (upper) energy band. In this case, both spin-orbit coupling and Raman coupling will suppress the appearance of loop. In particular, the critical condition for the appearance of loop structure can be controlled by adjusting external driving. We also study the tunneling dynamics of Bose-Einstein condensate with tunable spin-orbit coupling. More importantly, by tuning the periodic driving, the tunneling dynamics of the system and the location of nonlinear Landau-Zener tunneling can be controlled. We also find that the spin components of the system can be reversed. Finally, the Landau-Zener tunneling probability of the system is calculated. The research shows that the periodic driving can effectively change the tunneling probability of the system.
      Corresponding author: Xue Ju-Kui, xuejk@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12164042, 11764039, 11865014, 11847304), the Natural Science Foundation of Gansu Province, China (Grant Nos. 17JR5RA076, 20JR5RA526), the Scientific Research Project of Gansu Higher Education, China (Grant No. 2016A-005), the Innovation Capability Enhancement Project of Gansu Higher Education, China (Grant Nos. 2020A-146, 2019A-014), the Creation of Science and Technology of Northwest Normal University, China (Grant No. NWNU-LKQN-18-33), and the Excellent Graduate Innovation Star Project of Education Department of Gansu Province, China (Grant No. 2021CXZX-180)
    [1]

    Goldman N, Juzeliunas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401Google Scholar

    [2]

    Zhai H 2015 Rep. Prog. Phys. 78 026001Google Scholar

    [3]

    Zhang S, Jo G B 2019 J. Phys. Chem. Solids 128 75Google Scholar

    [4]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83

    [5]

    Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403Google Scholar

    [6]

    Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301Google Scholar

    [7]

    Ho T L, Zhang S 2011 Phys. Rev. Lett. 107 150403Google Scholar

    [8]

    Jian C M, Zhai H 2011 Phys. Rev. B 84 060508Google Scholar

    [9]

    Zhou X F, Zhou J, Wu C 2011 Phys. Rev. A 84 063624Google Scholar

    [10]

    Xu Y, Mao L, Wu B, Zhang C 2014 Phys. Rev. Lett. 113 130404Google Scholar

    [11]

    Xu X Q, Han J H 2011 Phys. Rev. Lett. 107 200401Google Scholar

    [12]

    Radic J, Sedrakyan T A, Spielman I B, Galitski V 2011 Phys. Rev. A 84 063604Google Scholar

    [13]

    Xu P, Yi S, Zhang W 2019 Phys. Rev. Lett. 123 073001Google Scholar

    [14]

    van der Bijl E, Duine R A 2011 Phys. Rev. Lett. 107 195302Google Scholar

    [15]

    Grass T, Saha K, Sengupta K, Lewenstein M 2011 Phys. Rev. A 84 053632Google Scholar

    [16]

    Li Y, Martone G I, Pitaevski L P, Stringari S 2013 Phys. Rev. Lett. 110 235302Google Scholar

    [17]

    Li S, Wang H, Li F, Cui X, Liu B 2020 Phys. Rev. A 102 033328Google Scholar

    [18]

    Zhang Y, Mao L, Zhang C 2012 Phys. Rev. Lett. 108 035302Google Scholar

    [19]

    Zhang D W, Xue Z Y, Yan H, Wang Z D, Zhu S L 2012 Phys. Rev. A 85 013628

    [20]

    Wu C J, Mondragon-Shem I, Zhou X F 2011 Chin. Phys. Lett. 28 097102Google Scholar

    [21]

    Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401Google Scholar

    [22]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [23]

    Zheng W, Yu Z Q, Cui X, Zhai H 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134007Google Scholar

    [24]

    Ji S C, Zhang L, Xu X T, Wu Z, Deng Y, Chen S, Pan J W 2015 Phys. Rev. Lett. 114 105301Google Scholar

    [25]

    Olson A J, Wang S J, Niffenegger R J, Li C H, Greene C H, Chen Y P 2014 Phys. Rev. A 90 013616Google Scholar

    [26]

    Xiong B, Zheng J H, Wang D W 2015 Phys. Rev. A 91 063602Google Scholar

    [27]

    Llorente J M G, Plata J 2016 Phys. Rev. A 94 053605Google Scholar

    [28]

    Wu H, Wang B Q, An J H 2021 Phys. Rev. B 103 L041115Google Scholar

    [29]

    Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C, Spielman I B 2015 Phys. Rev. Lett. 114 125301Google Scholar

    [30]

    Zhang Y, Chen G, Zhang C 2013 Sci. Rep. 3 1937Google Scholar

    [31]

    Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A O, Ketterle W 2017 Nature 543 91Google Scholar

    [32]

    Yao J, Zhang S 2014 Phys. Rev. A 90 023608Google Scholar

    [33]

    Olson A J, Blasing D B, Qu C, Li C H, Niffenegger R J, Zhang C, Chen Y P 2017 Phys. Rev. A 95 043623

    [34]

    Gomez Llorente J M, Plata J 2016 Phys. Rev. A 93 063633Google Scholar

    [35]

    Abdullaev F Kh, Salerno M 2018 Phys. Rev. A 98 053606Google Scholar

    [36]

    Liang J C, Zhang Y C, Jiao C, Zhang A X, Xue J K 2021 Phys. Rev. E 103 022204

    [37]

    Zhang Y, Mossman M E, Busch T, Engels P, Zhang C 2016 Front. Phys. 11 118103Google Scholar

    [38]

    Liu J, Fu L, Ou B Y, Chen S G, Choi D I, Wu B, Niu Q 2002 Phys. Rev. A 66 023404Google Scholar

    [39]

    Zhang Y, Gui Z, Chen Y 2019 Phys. Rev. A 99 023616Google Scholar

    [40]

    刘杰 2009 玻色-爱因斯坦凝聚体动力学: 非线性隧穿、相干及不稳定性 (北京: 科学出版社) 第40—50页

    Liu J 2009 Dynamics of Bose-Einstein Condensates: Nonlinear Tunneling, Coherence, and Instability (Beijing: Science Press) pp40–50 (in Chinese)

    [41]

    Wu B, Qian N 2003 New J. Phys. 5 104Google Scholar

  • 图 1  动量空间中不同相互作用关系下的能带结构 (a1), (a2) $g=0.0<g_{12}=0.7$; (b1), (b2) $g=g_{12}=0.7$; (c1), (c2) $g= $$ 1.5 > g_{12}=0.7$

    Figure 1.  Energy band structure in momentum space under different interactions: (a1), (a2) $g=0.0<g_{12}=0.7$; (b1), (b2) $g=g_{12}= $$ 0.7$; (c1), (c2) $g=1.5>g_{12}=0.7$

    图 2  不同周期驱动强度下能带出现loop结构的临界拉曼耦合$\varOmega_{0}$随种内原子间相互作用的变化规律. $g_{12}=0.7$. 图中“Loop down”表示loop出现在下能带, “Loop up”表示loop出现在上能带

    Figure 2.  Critical Raman coupling $\varOmega_{0}$ as a function of intraspecies atomic interaction for different periodic driving strength with $g_{12}=0.7$. “Loop down” means that the loop appears in lower band, while “Loop up” means that the loop appears in upper band

    图 3  不同种内原子间相互作用下出现loop的临界拉曼耦合$\varOmega_{0}$随周期驱动强度$\chi$的变化规律  (a) $g<g_{12}$; (b) $g>g_{12}$. $g_{12}=0.7$. 图中“Loop down”表示loop出现在下能带, “Loop up”表示loop出现在上能带

    Figure 3.  Critical Raman coupling $\varOmega_{0}$ as a function of periodic driving strength for different intraspecies atomic interaction: (a) $g<g_{12}$; (b) $g>g_{12}$. The other parameters are $g_{12}=0.7$. “Loop down” means that the loop appears in lower band, while “Loop up” means that the loop appears in upper band

    图 4  (a1), (a2) $g<g_{12}$($g=0.2< g_{12}=0.7$)时不同自旋-轨道耦合强度$k_{0}$下loop宽度随$\chi$的变化规律($\varOmega_{0}=0.3$); (b1), (b2) $g> $$ g_{12}$($g=1.5> g_{12}=0.7$)时不同拉曼耦合$\varOmega_{0}$下loop宽度随$\chi$的变化规律($k_{0}=1$)

    Figure 4.  (a1), (a2) Loop width as a function of $\chi$ for various spin-orbit coupled strength $k_{0}$ when $g<g_{12}$($ g=0.2< g_{12}=0.7$) with $\varOmega_{0}=0.3$; (b1), (b2) loop width as a function of $\chi$ for various Raman coupling $\varOmega_{0}$ when $g>g_{12}$ ($ g=1.5> g_{12}=0.7 $) with $k_{0}=1$.

    图 5  (a1)—(e1)存在loop结构时的能带结构, 原子最初制备在系统的上 (下) 能带用正方形(圆)标记; (a2)—(e2)原子初始制备在上能带中时对应的非线性朗道-齐纳隧穿动力学; (a3)—(e3)原子初始制备在下能带中时对应的非线性朗道-齐纳隧穿动力学. 第一行至第四行分别取$\chi=0$, 1, 2, 3, 4. $k_{0}=1$, $\varOmega_{0}=0.3$, $g=1.5$, $g_{12}=0.7$, $\alpha=0.0001$

    Figure 5.  (a1)−(e1) Energy band structure. The Bose-Einstein condensates are initially prepared in the lower (upper) band of the system labeled by the square (circle). (a2)−(e2) The corresponding nonlinear Landau-Zener tunneling dynamics when the atomics are initially prepared in the upper band. (a3)−(e3) The corresponding nonlinear Landau-Zener tunneling dynamics when the atomics are initially prepared in the lower band. From the first row to the fourth row: $\chi=0, 1, 2, 3, 4$, respectively. The other parameters are $k_{0}=1, \varOmega_{0}=0.3, g=1.5, g_{12}=0.7, \alpha=0.0001$

    图 6  不同周期驱动强度$\chi$下朗道-齐纳隧穿率随(a)自旋-轨道耦合强度$k_{0}$和(b)拉曼耦合$\varOmega_{0}$的变化规律  (a) $\varOmega_{0}=0.03$; (b) $k_{0}= $$ 1.0$. 不同形状的符号代表方程 (12) 给出的理论值, 不同的线条代表从方程 (8) 得到的数值解. $g=g_{12}=0.02$, $\alpha=0.001$

    Figure 6.  The Landau-Zener tunneling probabilities as a function of (a) the spin-orbit coupling strength $k_{0}$ and (b) Raman coupling $\varOmega_{0}$ for various periodic driving strength $\chi$: (a) $\varOmega_{0}=0.03$; (b) $k_{0}=1.0$. The different symbols represent the theoretical values given by Eq. (12) and different lines represent the results obtained by Eq. (8). The other parameters are $g=g_{12}=0.02, \alpha=0.001$

    图 7  不同周期驱动强度下非线性朗道-齐纳隧穿率随(a)拉曼耦合$\varOmega_{0}$和(b)自旋-轨道耦合强度$k_{0}$的变化规律  (a) $k_{0}=1$; (b) $\varOmega_{0}=0.1$. 不同形状的符号代表方程 (14) 给出的理论值, 不同的线条代表从方程 (8) 得到的数值解. $g=1.5>g_{12}=0.7$, $\alpha=0.005$

    Figure 7.  The nonlinear Landau-Zener tunneling probabilities as a function of (a) Raman coupling $\varOmega_{0}$ and (b) the spin-orbit coupling strength $k_{0}$ for various periodic driving strength $\chi$. (a) $k_{0}=1$, (b) $\varOmega_{0}=0.1$. The different symbols represent the theoretical values given by Eq. (14) and different lines represent the results obtained by Eq. (8). The other parameters are $g=1.5 > $$ g_{12}=0.7, \;\alpha=0.005$

    Baidu
  • [1]

    Goldman N, Juzeliunas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401Google Scholar

    [2]

    Zhai H 2015 Rep. Prog. Phys. 78 026001Google Scholar

    [3]

    Zhang S, Jo G B 2019 J. Phys. Chem. Solids 128 75Google Scholar

    [4]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83

    [5]

    Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403Google Scholar

    [6]

    Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301Google Scholar

    [7]

    Ho T L, Zhang S 2011 Phys. Rev. Lett. 107 150403Google Scholar

    [8]

    Jian C M, Zhai H 2011 Phys. Rev. B 84 060508Google Scholar

    [9]

    Zhou X F, Zhou J, Wu C 2011 Phys. Rev. A 84 063624Google Scholar

    [10]

    Xu Y, Mao L, Wu B, Zhang C 2014 Phys. Rev. Lett. 113 130404Google Scholar

    [11]

    Xu X Q, Han J H 2011 Phys. Rev. Lett. 107 200401Google Scholar

    [12]

    Radic J, Sedrakyan T A, Spielman I B, Galitski V 2011 Phys. Rev. A 84 063604Google Scholar

    [13]

    Xu P, Yi S, Zhang W 2019 Phys. Rev. Lett. 123 073001Google Scholar

    [14]

    van der Bijl E, Duine R A 2011 Phys. Rev. Lett. 107 195302Google Scholar

    [15]

    Grass T, Saha K, Sengupta K, Lewenstein M 2011 Phys. Rev. A 84 053632Google Scholar

    [16]

    Li Y, Martone G I, Pitaevski L P, Stringari S 2013 Phys. Rev. Lett. 110 235302Google Scholar

    [17]

    Li S, Wang H, Li F, Cui X, Liu B 2020 Phys. Rev. A 102 033328Google Scholar

    [18]

    Zhang Y, Mao L, Zhang C 2012 Phys. Rev. Lett. 108 035302Google Scholar

    [19]

    Zhang D W, Xue Z Y, Yan H, Wang Z D, Zhu S L 2012 Phys. Rev. A 85 013628

    [20]

    Wu C J, Mondragon-Shem I, Zhou X F 2011 Chin. Phys. Lett. 28 097102Google Scholar

    [21]

    Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401Google Scholar

    [22]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [23]

    Zheng W, Yu Z Q, Cui X, Zhai H 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134007Google Scholar

    [24]

    Ji S C, Zhang L, Xu X T, Wu Z, Deng Y, Chen S, Pan J W 2015 Phys. Rev. Lett. 114 105301Google Scholar

    [25]

    Olson A J, Wang S J, Niffenegger R J, Li C H, Greene C H, Chen Y P 2014 Phys. Rev. A 90 013616Google Scholar

    [26]

    Xiong B, Zheng J H, Wang D W 2015 Phys. Rev. A 91 063602Google Scholar

    [27]

    Llorente J M G, Plata J 2016 Phys. Rev. A 94 053605Google Scholar

    [28]

    Wu H, Wang B Q, An J H 2021 Phys. Rev. B 103 L041115Google Scholar

    [29]

    Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C, Spielman I B 2015 Phys. Rev. Lett. 114 125301Google Scholar

    [30]

    Zhang Y, Chen G, Zhang C 2013 Sci. Rep. 3 1937Google Scholar

    [31]

    Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A O, Ketterle W 2017 Nature 543 91Google Scholar

    [32]

    Yao J, Zhang S 2014 Phys. Rev. A 90 023608Google Scholar

    [33]

    Olson A J, Blasing D B, Qu C, Li C H, Niffenegger R J, Zhang C, Chen Y P 2017 Phys. Rev. A 95 043623

    [34]

    Gomez Llorente J M, Plata J 2016 Phys. Rev. A 93 063633Google Scholar

    [35]

    Abdullaev F Kh, Salerno M 2018 Phys. Rev. A 98 053606Google Scholar

    [36]

    Liang J C, Zhang Y C, Jiao C, Zhang A X, Xue J K 2021 Phys. Rev. E 103 022204

    [37]

    Zhang Y, Mossman M E, Busch T, Engels P, Zhang C 2016 Front. Phys. 11 118103Google Scholar

    [38]

    Liu J, Fu L, Ou B Y, Chen S G, Choi D I, Wu B, Niu Q 2002 Phys. Rev. A 66 023404Google Scholar

    [39]

    Zhang Y, Gui Z, Chen Y 2019 Phys. Rev. A 99 023616Google Scholar

    [40]

    刘杰 2009 玻色-爱因斯坦凝聚体动力学: 非线性隧穿、相干及不稳定性 (北京: 科学出版社) 第40—50页

    Liu J 2009 Dynamics of Bose-Einstein Condensates: Nonlinear Tunneling, Coherence, and Instability (Beijing: Science Press) pp40–50 (in Chinese)

    [41]

    Wu B, Qian N 2003 New J. Phys. 5 104Google Scholar

  • [1] Wen Li, Lu Mao-Wang, Chen Jia-Li, Chen Sai-Yan, Cao Xue-Li, Zhang An-Qi. Transmission time and spin polarization for electron in magnetically confined semiconducotr nanostructure modulated by spin-orbit coupling. Acta Physica Sinica, 2024, 73(11): 118504. doi: 10.7498/aps.73.20240285
    [2] Gao Jian-Hua, Huang Xu-Guang, Liang Zuo-Tang, Wang Qun, Wang Xin-Nian. Spin-orbital coupling in strong interaction and global spin polarization. Acta Physica Sinica, 2023, 72(7): 072501. doi: 10.7498/aps.72.20230102
    [3] He Ya-Ping, Chen Ming-Xia, Pan Jie-Feng, Li Dong, Lin Gang-Jun, Huang Xin-Hong. Electron-spin polarization effect in Rashba spin-orbit coupling modulated single-layered semiconductor nanostructure. Acta Physica Sinica, 2023, 72(2): 028503. doi: 10.7498/aps.72.20221381
    [4] Yuan Jia-Wang, Chen Li, Zhang Yun-Bo. Adiabatic elimination theory of multi-level system in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, 2023, 72(21): 216701. doi: 10.7498/aps.72.20231052
    [5] Jiao Chen, Jian Yue, Zhang Ai-Xia, Xue Ju-Kui. Excitation spectrum of tunable spin-orbit coupled Bose-Einstein condensates and its effective regulation. Acta Physica Sinica, 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [6] Wang Huan, He Xia-Yao, Li Shuai, Liu Bo. Quench dynamics of a spin-orbital coupled Bose-Einstein condensate with nonlinear interactions. Acta Physica Sinica, 2023, 72(10): 100309. doi: 10.7498/aps.72.20222401
    [7] Li Xin-Yue, Qi Juan-Juan, Zhao Dun, Liu Wu-Ming. Soliton solutions of the spin-orbit coupled binary Bose-Einstein condensate system. Acta Physica Sinica, 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [8] Zhang Ai-Xia, Jiang Yan-Fang, Xue Ju-Kui. Nonlinear energy band structure of spin-orbit coupled Bose-Einstein condensates in optical lattice. Acta Physica Sinica, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [9] Li Ji, Liu Bin, Bai Jing, Wang Huan-Yu, He Tian-Chen. Ground state of spin-orbit coupled rotating ferromagnetic Bose-Einstein condensate in toroidal trap. Acta Physica Sinica, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [10] Wen Lin, Liang Yi, Zhou Jing, Yu Peng, Xia Lei, Niu Lian-Bin, Zhang Xiao-Fei. Effects of linear Zeeman splitting on the dynamics of bright solitons in spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [11] Li Ji, Liu Wu-Ming. Ground state of spin-orbit coupled rotating two-component Bose-Einstein condensate in gradient magnetic field. Acta Physica Sinica, 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [12] He Li, Yu Zeng-Qiang. Landau critical velocity of spin-orbit-coupled Bose-Einstein condensate across quantum phase transition. Acta Physica Sinica, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [13] He Li, Yu Zeng-Qiang. Dynamic structure factors and sum rules in two-component quantum gases with spin-orbit coupling. Acta Physica Sinica, 2016, 65(13): 131101. doi: 10.7498/aps.65.131101
    [14] Chen Guang-Ping. Ground state of a rotating spin-orbit-coupled Bose-Einstein condensate in a harmonic plus quartic potential. Acta Physica Sinica, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [15] Li Zhi, Cao Hui. Klein tunneling in spin-orbit coupled Bose-Einstein condensate scattered by cusp barrier. Acta Physica Sinica, 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [16] Li Zhi, Wang Jian-Zhong. Barrier scattering properties in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [17] Liu Chao-Fei, Wan Wen-Juan, Zhang Gan-Yuan. Vortex pattern in spin-orbit coupled spin-1 Bose-Einstein condensate of 23Na. Acta Physica Sinica, 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [18] Xi Yu-Dong, Wang Deng-Long, She Yan-Chao, Wang Feng-Jiao, Ding Jian-Wen. Landau-Zener tunneling behaviors of Bose-Einstein condensates in a dichromatic optical lattice. Acta Physica Sinica, 2010, 59(6): 3720-3726. doi: 10.7498/aps.59.3720
    [19] Zhao Xing-Dong, Xie Zheng-Wei, Zhang Wei-Ping. Nonlinear spin waves in a Bose condensed atomic chain. Acta Physica Sinica, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [20] Wang Guan-Fang, Liu Bin, Fu Li-Bin, Zhao Hong. Adiabatic Landau-Zener tunnelling in nonlinear three-level system. Acta Physica Sinica, 2007, 56(7): 3733-3738. doi: 10.7498/aps.56.3733
Metrics
  • Abstract views:  4168
  • PDF Downloads:  114
  • Cited By: 0
Publishing process
  • Received Date:  14 April 2022
  • Accepted Date:  09 June 2022
  • Available Online:  21 October 2022
  • Published Online:  05 November 2022

/

返回文章
返回
Baidu
map