Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Move contrast X-ray imaging of electrochemical reaction process in electrolytic cell

Ju Xiao-Lu Li Ke Yu Fu-Cheng Xu Ming-Wei Deng Biao Li Bin Xiao Ti-Qiao

Citation:

Move contrast X-ray imaging of electrochemical reaction process in electrolytic cell

Ju Xiao-Lu, Li Ke, Yu Fu-Cheng, Xu Ming-Wei, Deng Biao, Li Bin, Xiao Ti-Qiao
PDF
HTML
Get Citation
  • The in-situ dynamic observation of ion migration and redox reactions during electrochemical reactions is critical for the understanding of the charging and discharging performance, ion migration characteristics, causes and preventives of defects in cells and electrolytic cells. For the convenience of parameter tuning, an electrolytic cell is adopted to investigate the electrochemical reaction. The processes of ion migration and redox reaction are investigated based on move contrast X-ray imaging. The experimental results demonstrate that the contrast-to-noise ratio of move contrast X-ray imaging is one order higher than that of the conventional temporal subtraction imaging. The initial status of the electrochemical reaction is successfully revealed by move contrast X-ray imaging. The images show that at the very beginning of the reaction, the signals of move contrast distribute almost evenly in the electrolytic cell, which implicates that the ion migration is initiated as soon as the cell is switched on and redox reaction occurs simultaneously all over the cell, other than the fact that ions are driven by electric field, approach to the cathode and then are reduced through electron gain. The signals of move contrast imaging are obviously stronger at positions inside the shadow of the electrodes than elsewhere. This means that the redox processes react densely at the electrodes. When the electrical voltage is adjusted to a critical value and the conventional methods are hard to observe ion migration or atom accumulation, the move contrast X-ray imaging can still disclose evidently the trace of ion migration or movement of atom clusters. Therefore, the move contrast X-ray imaging can improve significantly the sensitivity of observation to the trace of ions or atoms in the electrolyte and has great potentials in in-situ investigating the characteristics of electrochemical reactions.
      Corresponding author: Xiao Ti-Qiao, xiaotiqiao@zjlab.org.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1600703, 2021YFF0601203) and the National Natural Science Foundation of China (Grant No. 81430087).
    [1]

    Kang B, Ceder G 2009 Nature 458 190Google Scholar

    [2]

    Okubo M, Mizuno Y, Yamada H, Kim J, Hosono E, Zhou H S, Kudo T, Honma I 2010 ACS Nano 4 741Google Scholar

    [3]

    Ellis B, Perry L K, Ryan D H, Nazar L F 2006 J. Am. Chem. Soc. 128 11416Google Scholar

    [4]

    Zhao W Y, Sakurai K 2019 J. Synchrotron. Radiat. 26 230Google Scholar

    [5]

    Chen S L, Zhang Y, Zhao J J, Mi Z, Zhang J M, Cao J, Feng J C, Zhang G L, Qi J L, Li J Y, Gao P 2020 Sci. Bull. 65 1643Google Scholar

    [6]

    陈树林, 高鹏 2019 物理 48 168Google Scholar

    Chen S L, Gao P 2019 Physics 48 168Google Scholar

    [7]

    刘玄玄, 国洪轩, 徐涛, 尹奎波, 孙立涛 2021 70 086701Google Scholar

    Liu X X, Guo H X, Xu T, Yin K B, Sun L T 2021 Acta Phys. Sin. 70 086701Google Scholar

    [8]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X, Lu W 2012 Nat. Commun. 3 732Google Scholar

    [9]

    陆敬予, 柯承志, 龚正良, 李德平, 慈立杰, 张力, 张桥保 2021 70 198102Google Scholar

    Lu J Y, Ke C Z, Gong Z L, Li D P, Ci L J, Zhang L, Zhang Q B 2021 Acta Phys. Sin. 70 198102Google Scholar

    [10]

    郭祝崑, 李香庭 1983 32 406Google Scholar

    Guo Z K, Li X T 1983 Acta Phys. Sin. 32 406Google Scholar

    [11]

    杨同华, 包宗渝 1984 33 1149Google Scholar

    Yang T H, Bao Z Y 1984 Acta Phys. Sin. 33 1149Google Scholar

    [12]

    Warren J M, Bilheux H Z, Kang M, Voisin S 2013 Plant Soil 366 683Google Scholar

    [13]

    Ilott A J, Trease N M, Grey C P, Jerschow A 2014 Nat. Commun. 5 4536Google Scholar

    [14]

    Zhou L, Leskes M, Liu T, Grey C P 2015 Angew. Chem. Int. Edit. 54 14782Google Scholar

    [15]

    Zheng J, Tang M X, Hu Y-Y 2016 Angew Chem. Int. Edit. 55 12538Google Scholar

    [16]

    Takanashi T, Kawamura H 2019 World Congress on Medical Physics and Biomedical Engineering 2018 Prague, Czech Republic, June 3–8, 2018 p35

    [17]

    安汉文, 莫生凯, 李梦璐, 王家钧 2022 储能科学与技术 11 834

    An H W, Mo S K, Li M L, Wang J J 2022 Energy Storage Science and Technology 11 834

    [18]

    周逸凡, 杨慕紫, 佘峰权, 龚力, 张晓琪, 陈建, 宋树芹, 谢方艳 2021 70 178801Google Scholar

    Zhou Y F, Yang M Z, She F Q, Gong L, Zhang X Q, Chen J, Song S Q, Xie F Y 2021 Acta Phys. Sin. 70 178801Google Scholar

    [19]

    Cheng L, Tscheuschner S, Paulus F, Hopkinson P E, Kieling J, Khler A, Vaynzof Y, Huettner S 2016 Adv. Mater. 28 2446Google Scholar

    [20]

    王继飞, 林东旭, 袁永波 2019 68 158801Google Scholar

    Wang J F, Lin D X, Yuan Y B 2019 Acta Phys. Sin. 68 158801Google Scholar

    [21]

    果辰, 蔡欣炜, 罗文浩, 黄子耕, 冯庆荣, 甘子钊 2021 70 197401Google Scholar

    Guo C, Cai X W, Luo W H, Huang Z G, Feng Q R, Gan Z Z 2021 Acta Phys. Sin. 70 197401Google Scholar

    [22]

    王丽, 王海波, 王涛, 李发伸 2006 55 6515Google Scholar

    Wang L, Wang H B, Wang T, Li F S 2006 Acta Phys. Sin. 55 6515Google Scholar

    [23]

    Zhao W Y, Sakurai K 2017 ACS Omega 2 4363Google Scholar

    [24]

    王飞翔 2019 博士学位论文 (北京: 中国科学院大学 (中国科学院上海应用物理研究所))

    Wang F X 2019 Ph. D. Dissertation (Beijing: Shanghai Institute of Applied Physics, University of Chinese Academy of Sciences) (in Chinese)

    [25]

    Wang F X, Zhou P T, Li K, Mamtilahun M, Tang Y H, Du G H, Deng B, Xie H L, Yang G Y, Xiao T Q 2020 IUCrJ 7 1Google Scholar

    [26]

    李可 2021 博士学位论文 (北京: 中国科学院大学 (中国科学院上海应用物理研究所))

    Li K 2021 Ph. D. Dissertation (Beijing: Shanghai Institute of Applied Physics, University of Chinese Academy of Sciences) (in Chinese)

    [27]

    Song X M, Pogue B W, Jiang S D, Doyley M M, Dehghani H, Tosteson T D, Paulsen K D 2004 Appl. Optics 43 1053Google Scholar

    [28]

    Xie H L, Deng B, Du G H, Fu Y N, Guo H, Xue Y L, Peng G Y, Tao F, Zhang L, Xiao T Q 2020 Nucl. Sci. Tech. 31 102Google Scholar

    [29]

    郭荣怡, 马红娟, 薛艳玲, 谢红兰, 邓彪, 杜国浩, 王敏, 肖体乔 2010 光学学报 30 2898Google Scholar

    Guo R Y, Ma H J, Xue Y L, Xie H L, Deng B, Du G H, Wang M, Xiao T Q 2010 Acta Optica Sin. 30 2898Google Scholar

    [30]

    Ju X L, Deng B, Li K, Yu F C, Zhang H P, Xu M W, Du G H, Xie H L, Li B, Xiao T Q 2022 Nucl. Sci. Tech. 33 1Google Scholar

  • 图 1  实验原理和装置 (a)电解池内离子迁移示意图; (b) 成像光路示意图; (c)包含电解池和探测器的实验装置照片

    Figure 1.  Experimental setup for the electrochemical reaction: (a) Schematic diagram of ion migration; (b) schematic diagram of optical path for X-ray imaging; (c) photo for the experimental equipment including electrolytic cell and X-ray detector.

    图 2  Ag元素和Cu元素在25—27 keV能量下的线性吸收系数

    Figure 2.  Linear absorption coefficients of Ag and Cu elements at the energy range of 25–27 keV.

    图 3  电解池0.7 V电压通电后化学反应过程动态成像 (a) 传统时间减影成像1—12 s 关键帧; (b)对应的运动衬度成像关键帧

    Figure 3.  Dynamic X-ray imaging of electrochemical reaction after electrolytic cell is powered on at a voltage of 0.7 V: (a) Keyframes of traditional temporal subtraction imaging at the time period of 1–12 s; (b) the corresponding keyframes of move contrast imaging.

    图 4  电解池0.7 V电压通电初期800 ms内的电化学反应 (a) 时间减影成像关键帧; (b)运动衬度成像关键帧

    Figure 4.  The initial stage of electrochemical reaction in the electrolytic cell with the voltage of power supply set to 0.7 V: (a) Keyframes of 300, 400, 500, 600, 700, 800 ms respectively obtained with temporal subtraction X-ray imaging; (b) the correspondent keyframes of move contrast X-ray imaging.

    图 5  电解池0.5 V电压通电后的电化学反应过程成像 (a)传统时间减影成像3, 9, 15 s关键帧及在15 s时的局部区域的放大图; (b)运动衬度成像关键帧

    Figure 5.  X-ray imaging of electrochemical reaction after electrolytic cell is switched on at a voltage of 0.5 V: (a) Keyframes of 3, 9, 15 s respectively obtained with traditional temporal subtraction imaging supplied with a magnified view of the selected area at 15 s; (b) the corresponding keyframes of move contrast imaging.

    Baidu
  • [1]

    Kang B, Ceder G 2009 Nature 458 190Google Scholar

    [2]

    Okubo M, Mizuno Y, Yamada H, Kim J, Hosono E, Zhou H S, Kudo T, Honma I 2010 ACS Nano 4 741Google Scholar

    [3]

    Ellis B, Perry L K, Ryan D H, Nazar L F 2006 J. Am. Chem. Soc. 128 11416Google Scholar

    [4]

    Zhao W Y, Sakurai K 2019 J. Synchrotron. Radiat. 26 230Google Scholar

    [5]

    Chen S L, Zhang Y, Zhao J J, Mi Z, Zhang J M, Cao J, Feng J C, Zhang G L, Qi J L, Li J Y, Gao P 2020 Sci. Bull. 65 1643Google Scholar

    [6]

    陈树林, 高鹏 2019 物理 48 168Google Scholar

    Chen S L, Gao P 2019 Physics 48 168Google Scholar

    [7]

    刘玄玄, 国洪轩, 徐涛, 尹奎波, 孙立涛 2021 70 086701Google Scholar

    Liu X X, Guo H X, Xu T, Yin K B, Sun L T 2021 Acta Phys. Sin. 70 086701Google Scholar

    [8]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X, Lu W 2012 Nat. Commun. 3 732Google Scholar

    [9]

    陆敬予, 柯承志, 龚正良, 李德平, 慈立杰, 张力, 张桥保 2021 70 198102Google Scholar

    Lu J Y, Ke C Z, Gong Z L, Li D P, Ci L J, Zhang L, Zhang Q B 2021 Acta Phys. Sin. 70 198102Google Scholar

    [10]

    郭祝崑, 李香庭 1983 32 406Google Scholar

    Guo Z K, Li X T 1983 Acta Phys. Sin. 32 406Google Scholar

    [11]

    杨同华, 包宗渝 1984 33 1149Google Scholar

    Yang T H, Bao Z Y 1984 Acta Phys. Sin. 33 1149Google Scholar

    [12]

    Warren J M, Bilheux H Z, Kang M, Voisin S 2013 Plant Soil 366 683Google Scholar

    [13]

    Ilott A J, Trease N M, Grey C P, Jerschow A 2014 Nat. Commun. 5 4536Google Scholar

    [14]

    Zhou L, Leskes M, Liu T, Grey C P 2015 Angew. Chem. Int. Edit. 54 14782Google Scholar

    [15]

    Zheng J, Tang M X, Hu Y-Y 2016 Angew Chem. Int. Edit. 55 12538Google Scholar

    [16]

    Takanashi T, Kawamura H 2019 World Congress on Medical Physics and Biomedical Engineering 2018 Prague, Czech Republic, June 3–8, 2018 p35

    [17]

    安汉文, 莫生凯, 李梦璐, 王家钧 2022 储能科学与技术 11 834

    An H W, Mo S K, Li M L, Wang J J 2022 Energy Storage Science and Technology 11 834

    [18]

    周逸凡, 杨慕紫, 佘峰权, 龚力, 张晓琪, 陈建, 宋树芹, 谢方艳 2021 70 178801Google Scholar

    Zhou Y F, Yang M Z, She F Q, Gong L, Zhang X Q, Chen J, Song S Q, Xie F Y 2021 Acta Phys. Sin. 70 178801Google Scholar

    [19]

    Cheng L, Tscheuschner S, Paulus F, Hopkinson P E, Kieling J, Khler A, Vaynzof Y, Huettner S 2016 Adv. Mater. 28 2446Google Scholar

    [20]

    王继飞, 林东旭, 袁永波 2019 68 158801Google Scholar

    Wang J F, Lin D X, Yuan Y B 2019 Acta Phys. Sin. 68 158801Google Scholar

    [21]

    果辰, 蔡欣炜, 罗文浩, 黄子耕, 冯庆荣, 甘子钊 2021 70 197401Google Scholar

    Guo C, Cai X W, Luo W H, Huang Z G, Feng Q R, Gan Z Z 2021 Acta Phys. Sin. 70 197401Google Scholar

    [22]

    王丽, 王海波, 王涛, 李发伸 2006 55 6515Google Scholar

    Wang L, Wang H B, Wang T, Li F S 2006 Acta Phys. Sin. 55 6515Google Scholar

    [23]

    Zhao W Y, Sakurai K 2017 ACS Omega 2 4363Google Scholar

    [24]

    王飞翔 2019 博士学位论文 (北京: 中国科学院大学 (中国科学院上海应用物理研究所))

    Wang F X 2019 Ph. D. Dissertation (Beijing: Shanghai Institute of Applied Physics, University of Chinese Academy of Sciences) (in Chinese)

    [25]

    Wang F X, Zhou P T, Li K, Mamtilahun M, Tang Y H, Du G H, Deng B, Xie H L, Yang G Y, Xiao T Q 2020 IUCrJ 7 1Google Scholar

    [26]

    李可 2021 博士学位论文 (北京: 中国科学院大学 (中国科学院上海应用物理研究所))

    Li K 2021 Ph. D. Dissertation (Beijing: Shanghai Institute of Applied Physics, University of Chinese Academy of Sciences) (in Chinese)

    [27]

    Song X M, Pogue B W, Jiang S D, Doyley M M, Dehghani H, Tosteson T D, Paulsen K D 2004 Appl. Optics 43 1053Google Scholar

    [28]

    Xie H L, Deng B, Du G H, Fu Y N, Guo H, Xue Y L, Peng G Y, Tao F, Zhang L, Xiao T Q 2020 Nucl. Sci. Tech. 31 102Google Scholar

    [29]

    郭荣怡, 马红娟, 薛艳玲, 谢红兰, 邓彪, 杜国浩, 王敏, 肖体乔 2010 光学学报 30 2898Google Scholar

    Guo R Y, Ma H J, Xue Y L, Xie H L, Deng B, Du G H, Wang M, Xiao T Q 2010 Acta Optica Sin. 30 2898Google Scholar

    [30]

    Ju X L, Deng B, Li K, Yu F C, Zhang H P, Xu M W, Du G H, Xie H L, Li B, Xiao T Q 2022 Nucl. Sci. Tech. 33 1Google Scholar

  • [1] Liao Ke-Liang, He Qi-Li, Song Yang, Li Rong-Gang, Song Mao-Hua, Li Pan-Yun, Zhao Hai-Feng, Liu Peng, Zhu Pei-Ping. Development of a transmission X-ray nanometer-resolution microscope based on laboratory light source. Acta Physica Sinica, 2024, 73(17): 178701. doi: 10.7498/aps.73.20240727
    [2] Chen Zi-Han, Song Meng-Qi, Chen Heng, Wang Zhi-Li. Fringe visibility in X-ray interferometer using dual triangular phase gratings. Acta Physica Sinica, 2023, 72(14): 148701. doi: 10.7498/aps.72.20230461
    [3] Li Xiao-Jie, Yu Yun-Tai, Zhang Zhi-Wen, Dong Xiao-Rui. External characteristics of lithium-ion power battery based on electrochemical aging decay model. Acta Physica Sinica, 2022, 71(3): 038803. doi: 10.7498/aps.71.20211401
    [4] Liu Qiang, Ni Yao, Liu Lu, Sun Lin, Liu Jia-Qi, Xu Wen-Tao. Artificial synapses based on layered multi-component metal oxides. Acta Physica Sinica, 2022, 71(14): 148501. doi: 10.7498/aps.71.20220303
    [5] Zhou La-Zhen, Xia Wen-Jing, Xu Qian-Qian, Chen Zan, Li Fang-Zuo, Liu Zhi-Guo, Sun Tian-Xi. Micro cone-beam CT scanner based on X-ray polycapillary optics. Acta Physica Sinica, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [6] Li Tao, Cheng Xi-Ming, Hu Chen-Hua. Comparative study of reduced-order electrochemical models of the lithium-ion battery. Acta Physica Sinica, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [7] Xu Han, Zhang Lu, Dang Zheng. Coupling mechanism of mass transport and electrochemical reaction within patterned anode of solid oxide fuel cell. Acta Physica Sinica, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [8] Liu Zheng-Yu, Yang Kun, Wei Zi-Hong, Yao Li-Yang. Electrochemical model of lithium ion battery with simplified liquid phase diffusion equation. Acta Physica Sinica, 2019, 68(9): 098801. doi: 10.7498/aps.68.20190159
    [9] Qi Jun-Cheng, Liu Bin, Chen Rong-Chang, Xia Zheng-De, Xiao Ti-Qiao. X-ray three-dimensional imaging based on light field imaging technology. Acta Physica Sinica, 2019, 68(2): 024202. doi: 10.7498/aps.68.20181555
    [10] Wang Ji-Fei, Lin Dong-Xu, Yuan Yong-Bo. Recent progress of ion migration in organometal halide perovskite. Acta Physica Sinica, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [11] Cao Ru-Nan, Xu Fei, Zhu Jia-Bin, Ge Sheng, Wang Wen-Zhen, Xu Hai-Tao, Xu Run, Wu Yang-Lin, Ma Zhong-Quan, Hong Feng, Jiang Zui-Min. Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell. Acta Physica Sinica, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [12] Du Yang, Liu Xin, Lei Yao-Hu, Huang Jian-Heng, Zhao Zhi-Gang, Lin Dan-Ying, Guo Jin-Chuan, Li Ji, Niu Han-Ben. Quantitative analysis of the field of view for X-ray differential phase contrast imaging. Acta Physica Sinica, 2016, 65(5): 058701. doi: 10.7498/aps.65.058701
    [13] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan. Line focal X-ray source imaging. Acta Physica Sinica, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [14] Chen Xiao-Hu, Wang Xiao-Fang, Zhang Wei-Wei, Wang Wen-Hui. Analysis of imaging an extended X-ray source by using a Fresnel phase zone plate. Acta Physica Sinica, 2013, 62(1): 015208. doi: 10.7498/aps.62.015208
    [15] Yang Qiang, Liu Xin, Guo Jin-Chuan, Lei Yao-Hu, Huang Jian-Heng, Niu Han-Ben. Experimental study of X-ray phase contrast imaging without absorbing grating. Acta Physica Sinica, 2012, 61(16): 160702. doi: 10.7498/aps.61.160702
    [16] Wang Xiao-Fang, Wang Jing-Yu. Analysis of high-resolution X-ray imaging of an inertial-confinement-fusion target by using a Fresnel zone plate. Acta Physica Sinica, 2011, 60(2): 025212. doi: 10.7498/aps.60.025212
    [17] Zhang Xiang-Zhi, Xu Zi-Jian, Zhen Xiang-Jun, Wang Yong, Guo Zhi, Yan Rui, Chang Rui, Zhou Ran-Ran, Tai Ren-Zhong. Soft X-ray spectromicroscopy dual-energy contrast image for element spatial distribution analysis. Acta Physica Sinica, 2010, 59(7): 4535-4541. doi: 10.7498/aps.59.4535
    [18] Chen Min, Xiao Ti-Qiao, Luo Yu-Yu, Liu Li-Xiang, Wei Xun, Du Guo-Hao, Xu Hong-Jie. Phase-contrast imaging with microfocus x-ray source. Acta Physica Sinica, 2004, 53(9): 2953-2957. doi: 10.7498/aps.53.2953
    [19] LIU LI-MING, XIONG YU-QING, GUO YUN, LI GUAN-BIN, YANG DE-QUAN. PHOTOCHEMICAL REACTION ON ITO SURFACE INDUCED BY SOFT X-RAY IRRADIATION. Acta Physica Sinica, 2000, 49(9): 1883-1885. doi: 10.7498/aps.49.1883
    [20] ZHAO QING-LAN, HUANG YI-SEN. X-RAY TOPOGRAPHIC CONTRAST OF INCLUSIONS IN THE CRYSTAL OF LOW TEMPERATURE FORM BARIUM BORIC OXIDE. Acta Physica Sinica, 1990, 39(9): 1424-1428. doi: 10.7498/aps.39.1424
  • supplement 144101-20220339补充材料.pdf supplement
Metrics
  • Abstract views:  5063
  • PDF Downloads:  99
  • Cited By: 0
Publishing process
  • Received Date:  26 February 2022
  • Accepted Date:  29 March 2022
  • Available Online:  13 July 2022
  • Published Online:  20 July 2022

/

返回文章
返回
Baidu
map