Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Estimation method for beam size of superconducting transition edge detector

Gao Guan-Hua Xu Yu Liao Guo-Fu Lu Fang-Jun

Citation:

Estimation method for beam size of superconducting transition edge detector

Gao Guan-Hua, Xu Yu, Liao Guo-Fu, Lu Fang-Jun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Owing to its extremely low noise equivalent power, superconducting transition edge detectors have been widely used in various international cosmic microwave background polarization observation projects in recent years. In order to ensure that the detector works in the best performance range, the saturation power value of the detector needs to be adjusted according to the meteorological conditions of the observation site and the observation band, and the structural size of the detector beam directly determines the saturation power. Owing to process differences and other reasons, the beam sizes obtained under different processing schemes often cannot be directly used for horizontal comparison. In previous observation projects, a series of devices with different sizes were generally processed and measured one by one, and then the actual required size was inferred by fitting the relationship between the measured saturated power and the beam size. In order to match the target value, multiple machining iterations are often required. In this work, the boundary-restricted phonon transport model is used to successfully integrate the device parameters from previous observation projects to estimate the size of the transition edge sensor (TES) beam. According to the estimated value, the TES detector chips for detecting cosmic microwave background polarization signal are fabricated for the first time in China. Measurements show that its parameters deviate slightly from the target value. This method can well estimate the sizes of similar TES detectors, and thus has guiding significance for designing TES detectors in the future.
      Corresponding author: Lu Fang-Jun, lufj@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11653004, 11905235)
    [1]

    Mather J C, Fixsen D J, Shafer R A, Mosier C, Wilkinson D T 1999 Astrophys. J. 512 511Google Scholar

    [2]

    Hinshaw G, Spergel D N, Verde L, Hill R S, Meyer S S, Barnes C, Bennett C L, Halpern M, Jarosik N, Kogut A 2003 Astrophys. J. Suppl. Ser. 148 135Google Scholar

    [3]

    Ade P A R, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday A J, Barreiro R B, Bartlett J G, Battaner E, Benabed K, Benoît A, Benoit-Lévy A, Bernard J P, Bersanelli M, Bertincourt B, Bethermin M, Bielewicz P 2014 A&A 571 16

    [4]

    Abazajian K, Addison G, Adshead P, Ahmed Z, Allen S W, Alonso D, Alvarez M, Amin M A, Anderson A, Arnold K S, Baccigalupi C, Bailey K, Barkats D, Barron D, Barry P S, Bartlett J G, Thakur R B, Battaglia N, Baxter E, Bean R 2019 arXiv: 1908.01062 [astro-ph]

    [5]

    Hu W, White M 1997 New Astron. 2 323Google Scholar

    [6]

    Ade P A R, Aghanim N, Alves M I R, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Aussel H, Baccigalupi C, Banday A J, Barreiro R B, Barrena R, Bartelmann M, Bartlett J G, Bartolo N, Basak S, Battaner E, Battye R, Benabed K 2014 A&A 571 A1

    [7]

    Ade P A R, Ahmed Z, Amiri M, Barkats D, Basu T R, Bischoff C A, Beck D, Bock J J, Boenish H, Bullock E, Buza V, Cheshire IV J R, Connors J, Cornelison J, Crumrine M, Cukierman A, Denison E V, Dierickx M, Duband L, Eiben M 2022 Astrophys. J. 927 77Google Scholar

    [8]

    Enss C 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp2–5

    [9]

    张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜 2014 63 200303Google Scholar

    Zhang Q Y, Dong W H, He G F, Li T F, Liu J S, Chen W 2014 Acta Phys. Sin. 63 200303Google Scholar

    [10]

    Gao H, Liu C, Li Z, Liu Y, Li Y, Li S, Li H, Gao G, Lu F, Zhang X 2017 Radiat. Detect. Technol. Methods 1 12Google Scholar

    [11]

    Kuo C L, Bock J J, Bonetti J A, Brevik J, Zmuidzinas J 2008 Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV SPIE Marseille, France, August 18, 2008 p415

    [12]

    Ahmed Z, Amiri M, Benton S J, Bock J J, Bowensrubin R, Buder I, Bullock E, Connors J, Filippini J P, Grayson J A, Halpern M, Hilton G C, Hristov V V, Hui H, Irwin K D, Kang J, Karkare K S, Karpel E, Kovac J M, Kuo C L 2014 Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII SPIE Montréal, Quebec, Canada, August 19, 2014 p540

    [13]

    Kermish Z D, Ade P, Anthony A, Arnold K, Zahn O 2012 Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI SPIE Amsterdam, Netherlands, September 24, 2012 p84521C

    [14]

    Gualtieri R, Filippini J P, Ade P A R, Amiri M, Benton S J, Bergman A S, Bihary R, Bock J J, Bond J R, Bryan S A, Chiang H C, Contaldi C R, Doré O, Duivenvoorden A J, Eriksen H K, Farhang M, Fissel L M, Fraisse A A, Freese K, Galloway M 2018 J. Low Temp. Phys. 193 1112Google Scholar

    [15]

    Thornton R J, Ade P A R, Aiola S, Angilè F E, Amiri M, Beall J A, Becker D T, Cho H M, Choi S K, Corlies P, Coughlin K P, Datta R, Devlin M J, Dicker S R, Dünner R, Fowler J W, Fox A E, Gallardo P A, Gao J, Grace E 2016 Astrophys. J. Suppl. Ser. 227 21Google Scholar

    [16]

    Henderson S W, Allison R, Austermann J, Baildon T, Battaglia N, Beall J A, Becker D, De Bernardis F, Bond J R, Calabrese E, Choi S K, Coughlin K P, Crowley K T, Datta R, Devlin M J, Duff S M, Dunkley J, Dünner R, Engelen A V, Gallardo P A 2016 J. Low Temp. Phys. 184 772Google Scholar

    [17]

    Koopman B J, Cothard N F, Choi S K, Crowley K T, Duff S M, Henderson S W, Ho S P, Hubmayr J, Gallardo P A, Nati F, Niemack M D, Simon S M, Staggs S T, Stevens J R, Vavagiakis E M, Wollack E J 2018 J. Low Temp. Phys. 193 1103Google Scholar

    [18]

    Ding J J, Ade P A R, Anderson A J, Avva J, Ahmed Z, Arnold K, Austermann J E, Bender A N, Benson B A, Bleem L E, Byrum K, Carlstrom J E, Carter F W, Chang C L, Cho H M, Cliche J F, Cukierman A, Czaplewski D, Divan R, Haan T D 2017 IEEE Trans. Appl. Supercond. 27 1

    [19]

    Mather J C 1982 Appl. Opt. 21 1125Google Scholar

    [20]

    Ullom J N, Bennett D A 2015 Supercond. Sci. Technol. 28 084003Google Scholar

    [21]

    Suen J Y, Fang M T, Lubin P M 2014 EEE Trans. Terahertz Sci. Technol. 4 86Google Scholar

    [22]

    Feshchenko A V, Saira O P, Peltonen J T, Pekola J P 2017 Sci. Rep. 7 1Google Scholar

    [23]

    Wang G, Yefremenko V, Novosad V, Datesman A, Pearson J, Divan R, Chang C L, Bleem L, Crites A T, Mehl J, Natoli T, McMahon J, Sayre J, Ruhl J, Meyer S S, Carlstrom J E 2010 IEEE Trans. Appl. Supercond. 21 232

    [24]

    Watson S K, Pohl R O 2003 Phys. Rev. B 68 104203Google Scholar

    [25]

    Bruls R J, Hintzen H T, De With G, Metselaar R 2001 J. Eur. Ceram. Soc. 21 263Google Scholar

    [26]

    Stephens R B 1973 Phys. Rev. B 8 2896Google Scholar

    [27]

    华钰超, 曹炳阳 2015 64 146501Google Scholar

    Hua Y C, Cao B Y 2015 Acta Phys. Sin. 64 146501Google Scholar

    [28]

    Sultan R, Avery A D, Underwood J M, Mason S J, Bassett D, Zink B L 2013 Phys. Rev. B 87 214305Google Scholar

    [29]

    Johnson B R, Flanigan D, Abitbol M H, Ade P A R, Bryan S, Cho H M, Datta R, Day P, Doyle S, Irwin K, Jones G, Li D, Mauskopf P, McCarrick H, McMahon J, Miller A, Pisano G, Song Y, Surdi H, Tucker C 2018 J. Low Temp. Phys. 193 103Google Scholar

  • 图 1  (a)超导薄膜理想R-T曲线; (b) AlMn材料实测R-T曲线

    Figure 1.  (a) Ideal R-T curve of superconducting thin films; (b) measured R-T curve of AlMn alloy

    图 2  TES探测器框架示意图

    Figure 2.  Schematic diagram of TES detector system

    图 3  (a) TES探测器立体结构图; (b)梁架结构横截面示意图

    Figure 3.  (a) Three dimensional (3D) structure of TES detector; (b) cross section of beam structure

    图 4  不同梁架宽度下声子有效平均自由程与材料表面漫反射概率的关系

    Figure 4.  Relationship between the effective mean free path of phonons and the probability of diffuse reflection on the material surface under different beam widths

    图 5  TES探测器加工过程横截面示意图

    Figure 5.  Schematic diagram of cross-section of TES detector fabricating process

    图 6  (a) TES探测器芯片整体实物照片; (b) TES探测器局部放大照片

    Figure 6.  (a) Overall physical photo of TES detector chip; (b) partially enlarged photo of TES detector

    图 7  (a)绝热去磁制冷机照片; (b)装载TES的样品托的照片; (c)样品托在制冷机内安装状态的照片

    Figure 7.  (a) Adiabatic demagnetization refrigerator; (b) sample holder loaded with TES; (c) sample holder installed in the refrigerator

    图 8  不同尺寸TES探测器发热功率$ P_{\rm TES} $随热沉温度变化曲线 (a)样品梁架长度为1100 ${\text{μm}}$; (b)样品梁架长度为900 ${\text{μm}} $; (c)样品梁架长度为700 ${\text{μm}} $.

    Figure 8.  Curves of heating power as a function of heat sink temperature with different beam sizes: (a) The length of beams is 1100 μm; (b) the length of beams is 900 μm; (c) the length of beams is 700 μm

    图 9  不同尺寸下TES探测器饱和功率$ P_{\rm \text{饱和}} $随热沉温度变化曲线 (a) 样品梁架长度为1100 $ {\text{μm}}$; (b)样品梁架长度为900 ${\text{μm}}$; (c)样品梁架长度为700 $ {\text{μm}}$

    Figure 9.  Curve of saturation power of TES detector with heat sink temperature under different sizes: (a) The length of beams is 1100 μm; (b) the length of beams is 900 μm; (c) the length of beams is 700 μm

    图 10  (a)不同尺寸TES探测器实际饱和功率与预测饱和功率之比随热沉温度的变化; (b)不同尺寸TES探测器实际饱和功率与修正后预测饱和功率之比随热沉温度的变化

    Figure 10.  (a) Ratio of actual saturation power to predicted saturation power for TES detectors of different sizes as a function of heat sink temperature; (b) the ratio of the actual saturation power to the corrected predicted saturation power of TES detectors with different sizes as a function of heat sink temperature

    Baidu
  • [1]

    Mather J C, Fixsen D J, Shafer R A, Mosier C, Wilkinson D T 1999 Astrophys. J. 512 511Google Scholar

    [2]

    Hinshaw G, Spergel D N, Verde L, Hill R S, Meyer S S, Barnes C, Bennett C L, Halpern M, Jarosik N, Kogut A 2003 Astrophys. J. Suppl. Ser. 148 135Google Scholar

    [3]

    Ade P A R, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday A J, Barreiro R B, Bartlett J G, Battaner E, Benabed K, Benoît A, Benoit-Lévy A, Bernard J P, Bersanelli M, Bertincourt B, Bethermin M, Bielewicz P 2014 A&A 571 16

    [4]

    Abazajian K, Addison G, Adshead P, Ahmed Z, Allen S W, Alonso D, Alvarez M, Amin M A, Anderson A, Arnold K S, Baccigalupi C, Bailey K, Barkats D, Barron D, Barry P S, Bartlett J G, Thakur R B, Battaglia N, Baxter E, Bean R 2019 arXiv: 1908.01062 [astro-ph]

    [5]

    Hu W, White M 1997 New Astron. 2 323Google Scholar

    [6]

    Ade P A R, Aghanim N, Alves M I R, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Aussel H, Baccigalupi C, Banday A J, Barreiro R B, Barrena R, Bartelmann M, Bartlett J G, Bartolo N, Basak S, Battaner E, Battye R, Benabed K 2014 A&A 571 A1

    [7]

    Ade P A R, Ahmed Z, Amiri M, Barkats D, Basu T R, Bischoff C A, Beck D, Bock J J, Boenish H, Bullock E, Buza V, Cheshire IV J R, Connors J, Cornelison J, Crumrine M, Cukierman A, Denison E V, Dierickx M, Duband L, Eiben M 2022 Astrophys. J. 927 77Google Scholar

    [8]

    Enss C 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp2–5

    [9]

    张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜 2014 63 200303Google Scholar

    Zhang Q Y, Dong W H, He G F, Li T F, Liu J S, Chen W 2014 Acta Phys. Sin. 63 200303Google Scholar

    [10]

    Gao H, Liu C, Li Z, Liu Y, Li Y, Li S, Li H, Gao G, Lu F, Zhang X 2017 Radiat. Detect. Technol. Methods 1 12Google Scholar

    [11]

    Kuo C L, Bock J J, Bonetti J A, Brevik J, Zmuidzinas J 2008 Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV SPIE Marseille, France, August 18, 2008 p415

    [12]

    Ahmed Z, Amiri M, Benton S J, Bock J J, Bowensrubin R, Buder I, Bullock E, Connors J, Filippini J P, Grayson J A, Halpern M, Hilton G C, Hristov V V, Hui H, Irwin K D, Kang J, Karkare K S, Karpel E, Kovac J M, Kuo C L 2014 Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII SPIE Montréal, Quebec, Canada, August 19, 2014 p540

    [13]

    Kermish Z D, Ade P, Anthony A, Arnold K, Zahn O 2012 Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI SPIE Amsterdam, Netherlands, September 24, 2012 p84521C

    [14]

    Gualtieri R, Filippini J P, Ade P A R, Amiri M, Benton S J, Bergman A S, Bihary R, Bock J J, Bond J R, Bryan S A, Chiang H C, Contaldi C R, Doré O, Duivenvoorden A J, Eriksen H K, Farhang M, Fissel L M, Fraisse A A, Freese K, Galloway M 2018 J. Low Temp. Phys. 193 1112Google Scholar

    [15]

    Thornton R J, Ade P A R, Aiola S, Angilè F E, Amiri M, Beall J A, Becker D T, Cho H M, Choi S K, Corlies P, Coughlin K P, Datta R, Devlin M J, Dicker S R, Dünner R, Fowler J W, Fox A E, Gallardo P A, Gao J, Grace E 2016 Astrophys. J. Suppl. Ser. 227 21Google Scholar

    [16]

    Henderson S W, Allison R, Austermann J, Baildon T, Battaglia N, Beall J A, Becker D, De Bernardis F, Bond J R, Calabrese E, Choi S K, Coughlin K P, Crowley K T, Datta R, Devlin M J, Duff S M, Dunkley J, Dünner R, Engelen A V, Gallardo P A 2016 J. Low Temp. Phys. 184 772Google Scholar

    [17]

    Koopman B J, Cothard N F, Choi S K, Crowley K T, Duff S M, Henderson S W, Ho S P, Hubmayr J, Gallardo P A, Nati F, Niemack M D, Simon S M, Staggs S T, Stevens J R, Vavagiakis E M, Wollack E J 2018 J. Low Temp. Phys. 193 1103Google Scholar

    [18]

    Ding J J, Ade P A R, Anderson A J, Avva J, Ahmed Z, Arnold K, Austermann J E, Bender A N, Benson B A, Bleem L E, Byrum K, Carlstrom J E, Carter F W, Chang C L, Cho H M, Cliche J F, Cukierman A, Czaplewski D, Divan R, Haan T D 2017 IEEE Trans. Appl. Supercond. 27 1

    [19]

    Mather J C 1982 Appl. Opt. 21 1125Google Scholar

    [20]

    Ullom J N, Bennett D A 2015 Supercond. Sci. Technol. 28 084003Google Scholar

    [21]

    Suen J Y, Fang M T, Lubin P M 2014 EEE Trans. Terahertz Sci. Technol. 4 86Google Scholar

    [22]

    Feshchenko A V, Saira O P, Peltonen J T, Pekola J P 2017 Sci. Rep. 7 1Google Scholar

    [23]

    Wang G, Yefremenko V, Novosad V, Datesman A, Pearson J, Divan R, Chang C L, Bleem L, Crites A T, Mehl J, Natoli T, McMahon J, Sayre J, Ruhl J, Meyer S S, Carlstrom J E 2010 IEEE Trans. Appl. Supercond. 21 232

    [24]

    Watson S K, Pohl R O 2003 Phys. Rev. B 68 104203Google Scholar

    [25]

    Bruls R J, Hintzen H T, De With G, Metselaar R 2001 J. Eur. Ceram. Soc. 21 263Google Scholar

    [26]

    Stephens R B 1973 Phys. Rev. B 8 2896Google Scholar

    [27]

    华钰超, 曹炳阳 2015 64 146501Google Scholar

    Hua Y C, Cao B Y 2015 Acta Phys. Sin. 64 146501Google Scholar

    [28]

    Sultan R, Avery A D, Underwood J M, Mason S J, Bassett D, Zink B L 2013 Phys. Rev. B 87 214305Google Scholar

    [29]

    Johnson B R, Flanigan D, Abitbol M H, Ade P A R, Bryan S, Cho H M, Datta R, Day P, Doyle S, Irwin K, Jones G, Li D, Mauskopf P, McCarrick H, McMahon J, Miller A, Pisano G, Song Y, Surdi H, Tucker C 2018 J. Low Temp. Phys. 193 103Google Scholar

  • [1] XU Minghui, LIU Xiaomin, SHI Jiajia, ZHANG Chong, ZHANG Jing, YANG Rongguo, GAO Jiangrui. Generation of microwave-phonon and magnon-optics entangled states. Acta Physica Sinica, 2025, 74(5): 054202. doi: 10.7498/aps.74.20241664
    [2] WANG DeXin, ZHANG Rui, YU DeKang, NA Hui, YAO ZhangHao, WU LingHe, ZHANG SuYaLaTu, LIANG TaiRan, HUANG MeiRong, WANG ZhiLong, BAI Yu, HUANG YongShun, YANG Xue, ZHANG JiaWen, LIU MengDi, MA Qiang, YU Jing, JI XiuYan, YU YiLiQi, SHAO XuePeng. Observation and Research on Cosmic Ray Muons and Solar Modulation Effect Based on Plastic Scintillator Detector. Acta Physica Sinica, 2025, 74(5): 1-8. doi: 10.7498/aps.74.20241704
    [3] Wang Xue-Zhi, Tang Yu-Ting, Che Jun-Wei, Linghu Jia-Jun, Hou Zhao-Yang. Mechanism of amorphous-like thermal conductivity in binary oxide Yb3TaO7. Acta Physica Sinica, 2023, 72(5): 056101. doi: 10.7498/aps.72.20221581
    [4] Wang Quan-Jie, Deng Yu-Ge, Wang Ren-Zong, Liu Xiang-Jun. Interface engineering moderated interfacial thermal conductance of GaN-based heterointerfaces. Acta Physica Sinica, 2023, 72(22): 226301. doi: 10.7498/aps.72.20230791
    [5] Ren Guo-Liang, Shen Kai-Bo, Liu Yong-Jia, Liu Ying-Guang. Thermal conduction mechanism of graphene-like carbon nitride structure (C3N). Acta Physica Sinica, 2023, 72(1): 013102. doi: 10.7498/aps.72.20221441
    [6] Pan Dong-Kai, Zong Zhi-Cheng, Yang Nuo. Phonon weak couplings in nanoscale thermophysics. Acta Physica Sinica, 2022, 71(8): 086302. doi: 10.7498/aps.71.20220036
    [7] Feng Dai-Li, Feng Yan-Hui, Shi Jun. Lattice Boltzamn model of phonon heat conduction in mesoporous composite material. Acta Physica Sinica, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [8] Zhang Qing-Ya, Dong Wen-Hui, He Gen-Fang, Li Tie-Fu, Liu Jian-She, Chen Wei. Review on superconducting transition edge sensor based single photon detector. Acta Physica Sinica, 2014, 63(20): 200303. doi: 10.7498/aps.63.200303
    [9] Ye Fu-Qiu, Li Ke-Min, Peng Xiao-Fang. Ballistic phonon transport and thermal conductance in multi-channel quantum structure at low temperatures. Acta Physica Sinica, 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [10] Peng Xiao-Fang, Wang Xin-Jun, Gong Zhi-Qiang, Chen Li-Qun. Acoustic phonon transport and thermal conductance in one-dimensional quantum waveguide modulated with quantum dots. Acta Physica Sinica, 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [11] Xing Zhong-Wen, Liu Mei, Li Bin. Magnetism and phonon softening of LiFeAs superconductors. Acta Physica Sinica, 2011, 60(7): 077402. doi: 10.7498/aps.60.077402
    [12] Jin Wei, Hui Ning-Ju, Qu Shi-Xian. Phonon transport through helix nanobelts. Acta Physica Sinica, 2011, 60(1): 016301. doi: 10.7498/aps.60.016301
    [13] Lei Zhong-Hua, Lan Ming-Jian, Wang Xian-You, Li Jian-Jie. Influence in polarization of cosmic microwave background radiation due to relic gravitational waves. Acta Physica Sinica, 2008, 57(11): 7408-7414. doi: 10.7498/aps.57.7408
    [14] He Meng-Dong, Gong Zhi-Qiang. Acoustic-phonon transmission in multilayer heterojunctions. Acta Physica Sinica, 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [15] Tang Li-Ming, Wang Yan, Wang Dan, Wang Ling-Ling. Effect of boundary conditions on phonon transmission in a dielectric quantum waveguide. Acta Physica Sinica, 2007, 56(1): 437-442. doi: 10.7498/aps.56.437
    [16] FAN XI-QING, LIU YAN-ZHANG, WANG HUAI-SHENG, LIU FU-SUI. SUPERCONDUCTIVITY THEORY OF THE ELECTRON-MANY PHONONS COUPLINGS. Acta Physica Sinica, 1989, 38(1): 53-59. doi: 10.7498/aps.38.53
    [17] WENG ZHENG-YU, WU HANG-SHENG. RELATION BETWEEN THE FORM OF THE NORMALIZED EFFECTIVE PHONON SPECTRUM AND THE SUPERCONDUCTING Tc. Acta Physica Sinica, 1988, 37(2): 239-247. doi: 10.7498/aps.37.239
    [18] LEI XIAO-LIN, TING CHIN-SEN. EFFECT OF COMBINED ACOUSTIC AND OPTICAL PHONON SCATTERING IN NONLINEAR ELECTRONIC TRANSPORT. Acta Physica Sinica, 1985, 34(8): 983-991. doi: 10.7498/aps.34.983
    [19] WEI CHONG-DE, ZHAO SHI-PING, XIE LI-XIN. THE INHOMOGENEOUS STATES OF SUPERCONDUCTING TIN FILMS UNDER PHONON INJECTION. Acta Physica Sinica, 1985, 34(10): 1368-1372. doi: 10.7498/aps.34.1368
    [20] LI HONG-CHENG. INFLUENCE OF EFFECTIVE PHONON SPECTRUM α2F(ω) ON Tc OF SUPERCONDUCTORS. Acta Physica Sinica, 1979, 28(1): 104-116. doi: 10.7498/aps.28.104
Metrics
  • Abstract views:  4364
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  25 February 2022
  • Accepted Date:  18 March 2022
  • Available Online:  19 July 2022
  • Published Online:  05 August 2022

/

返回文章
返回
Baidu
map