Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of AlGaN/GaN Schottky barrier diodes on free-standing GaN substrate with low leakage current

Wu Peng Zhang Tao Zhang Jin-Cheng Hao Yue

Citation:

Investigation of AlGaN/GaN Schottky barrier diodes on free-standing GaN substrate with low leakage current

Wu Peng, Zhang Tao, Zhang Jin-Cheng, Hao Yue
PDF
HTML
Get Citation
  • Benefiting from the excellent properties of GaN with a wide bandgap of 3.4 eV as well as high critical field of 3.3 MV/cm, GaN-based devices prove to be a promising candidate in extreme conditions. Especially, high-density high-mobility two-dimensional electron gas (2DEG) induced by spontaneous piezoelectric polarization in AlGaN/GaN heterostructure enables AlGaN/GaN device to lower on-resistance (RON). However, owing to the lack of free-standing GaN substrate with large size and high quality, the epitaxis of GaN is always based on hetero-substrate such as Al2O3, Si and SiC, which shows large lattice mismatch and thermal mismatch. The large mismatch between GaN and substrate leads to high dislocation as well as high leakage current (IR) of GaN devices. In this work, high-performance AlGaN/GaN Schottky barrier diode with low IR and low turn-on voltage (VON) is fabricated on a 3-inch free-standing GaN substrate with C-doping GaN buffer layer to suppress IR. Owing to the suppressed dislocation density of the AlGaN/GaN epitaxial wafer on free-standing substrate, low Ohmic contact resistance (RC) is difficult to achieve the suppressed penetration of Ohmic metal into 2DEG channel, which is adverse to the high current density. In this work, a low RC of 0.37 Ω·mm is obtained by one-step self-aligned Ohmic process, including the etching of partial AlGaN barrier layer and lift-off of Ohmic metal. The 2DEG is formed under the effect of residual AlGaN barrier layer, and the short distance between 2DEG and Ohmic metal contributes to lowering the value of RC. The groove anode region is defined by the low damaged inductively coupled plasma process with a low etching rate of 1 nm/min, and the total depth is 35 nm, confirmed by atomic force microscope. Fully removing the AlGaN barrier layer from the anode region makes the anode metal directly contact the 2DEG channel, thereby improving the performance of the fabricated AlGaN/GaN Schottky barrier diode (SBD) with a low VON of 0.67 V, low IR of 3.6 × 10–8 A/mm, and an ION/IOFF ratio of up to 3 × 107. The values of differential RON,sp are calculated to be 0.44, 0.86, 1.59, 2.55 mΩ·cm2 for GaN SBDs with various values of LAC of 6, 10, 15, 20 μm, and the values of RON,sp determined at an anode current density of 100 mA/mm are 1.27, 2.08, 3.29, 4.63 mΩ·cm2, respectively. As the measured temperature increases from 300 to 425 K, the IR is increased only by 3 times to 1.6 × 10–7 A/mm, which shows the great potential for next-generation power electronics.
      Corresponding author: Zhang Tao, zhangtao@xidian.edu.cn ; Zhang Jin-Cheng, jchzhang@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104185), the National Science Fund for Distinguished Young Scholars of China (Grant No. 61925404), and the Fundamental Research Fund for the Central Universities, China (Grant No. JB211103).
    [1]

    Zhang T, Wang Y, Zhang Y N, Lv Y G, Ning J, Zhang Y C, Zhou H, Duan X L, Zhang J C, Hao Y 2021 IEEE Trans. Electron Devices 68 2661Google Scholar

    [2]

    Hao R H, Li W Y, Fu K, Yu G H, Song L, Yuan J, Li J S, Deng X G, Zhang X D, Zhou Q, Fan Y M, Shi W H, Cai Y, Zhang X P, Zhang B S 2017 IEEE Electron Device Lett. 38 1567Google Scholar

    [3]

    Zhang L, Zheng Z Y, Yang S, Song W J, He J B, Chen K J 2021 IEEE Electron Device Lett. 42 22Google Scholar

    [4]

    Zhang T, Li R H, Lu J, Zhang Y N, Lv Y G, Duan X L, Xu S R, Zhang J C, Hao Y 2021 IEEE Electron Device Lett. 42 1747Google Scholar

    [5]

    Hsin Y M, Ke T Y, Lee G Y, Chyi J I, Chiu H C 2012 Phys. Status Solidi C 9 949Google Scholar

    [6]

    Nela L, Erp R V, Kampitsis G, Yildirim H K, Ma J, Matioli E 2021 IEEE Trans. Power Electron. 36 1269Google Scholar

    [7]

    Tsou C W, Wei K P, Lian Y W, Hsu S S H 2016 IEEE Electron Device Lett. 37 70Google Scholar

    [8]

    Gao J N, Wang M J, Yin R Y, Liu S F, Wen C P, Wang J Y, Wu W G, Hao Y L, Jin Y F, Shen B 2017 IEEE Electron Device Lett. 38 1425Google Scholar

    [9]

    Hu J, Stoffels S, Lenci S, Bakeroot B, Jaeger B D, Hove M V, Ronchi N, Venegas R, Liang H, Zhao M, Groeseneken G, Decoutere S 2016 IEEE Trans. Electron Devices 63 997Google Scholar

    [10]

    Li X D, Hove M V, Zhao M, Geens K, Lempinen V P, Sormunen J, Groeseneken G, Decoutere S 2017 IEEE Electron Device Lett. 38 918Google Scholar

    [11]

    Ma J, Matioli E 2018 Appl. Phys. Lett. 112 052101Google Scholar

    [12]

    Zhang T, Lv Y G, Li R H, Zhang Y N, Zhang Y C, Li X D, Zhang J C, Hao Y 2021 IEEE Electron Device Lett. 42 477Google Scholar

    [13]

    Zhou Q, Jin Y, Shi Y Y, Mou J Y, Bao X, Chen B W, Zhang B 2015 IEEE Electron Device Lett. 36 660Google Scholar

    [14]

    Bahat-Treidel E, Hilt O, Zhytnytska R, Wentzel A, Meliani C, Wurfl J, Trankle G 2012 IEEE Electron Device Lett. 33 357Google Scholar

    [15]

    Lee J G, Park B R, Cho C H, Seo K S, Cha H Y 2013 IEEE Electron Device Lett. 34 214Google Scholar

    [16]

    Xiao M, Ma Y W, Cheng K, Liu K, Xie A, Beam E, Cao Y, Zhang Y H 2020 IEEE Electron Device Lett. 41 1177Google Scholar

    [17]

    Wang T T, Wang X, He Y, Jia M, Ye Q, Xu Y, Zhang Y H, Li Y, Bai L H, Ma X H, Hao Y 2021 IEEE Trans. Electron Devices 68 2867Google Scholar

    [18]

    Ma J, Santoruvo G, Tandon P, Matioli E 2016 IEEE Trans. Electron Devices 63 3614Google Scholar

    [19]

    Gao J N, Jin Y F, Xie B, Wen C P, Hao Y L, Shen B, Wang M J 2018 IEEE Electron Device Lett. 39 859Google Scholar

    [20]

    Zhang T, Zhang Y N, Zhang J C, Li X D, Lv Y G, Hao Y 2021 IEEE Electron Device Lett. 42 304Google Scholar

    [21]

    Fu H Q, Fu K, Alugubelli S R, Cheng C Y, Huang X Q, Chen H, Yang T H, Yang C, Zhou J G, Montes J, Deng X G, Qi X, Goodnick S M, Ponce F A, Zhao Y J 2020 IEEE Electron Device Lett. 41 127Google Scholar

    [22]

    Kizilyalli I C, Edwards A P, Nie H, Disney D, Bour D 2013 IEEE Trans. Electron Devices 60 3067Google Scholar

    [23]

    Lin W, Wang M J, Yin R Y, Wei J, Wen C P, Xie B, Hao Y L, Shen B 2021 IEEE Electron Device Lett. 42 1124Google Scholar

    [24]

    Liu X K, Gu H, Li K L, Guo L C, Zhu D L, Lu Y M, Wang J F, Kuo H C, Liu Z H, Liu W J, Chen L, Fang J P, Ang K W, Xu K, Ao J P 2017 AIP Adv. 7 095305Google Scholar

    [25]

    Chu J Y, Wang Q, Jiang L J, Feng C, Li W, Liu H X, Xiao H L, Wang X L 2021 J. Electron Mater. 50 2630Google Scholar

    [26]

    Alshahed M, Heuken L, Alomari M, Cora I, Toth L, Pecz B, Wachter C, Bergunde T, Burghartz J N 2018 IEEE Trans. Electron Devices 65 2939Google Scholar

    [27]

    Gao J N, Jin Y F, Hao Y L, Xie B, Wen C P, Shen B, Wang M J 2018 IEEE Trans. Electron Devices 65 1728Google Scholar

    [28]

    Wu J Y, Lei S Q, Cheng W C, Sokolovskij R, Wang Q, Xia G R, Yu H Y 2019 J. Vac. Sci. Technol. A 37 060401Google Scholar

    [29]

    Zhang T, Zhang J C, Zhou H, Chen T S, Zhang K, Hu Z Z, Bian Z K, Dang K, Wang Y, Zhang L, Ning J, Ma P J, Hao Y 2018 IEEE Electron Device Lett. 39 1548Google Scholar

    [30]

    Zhu M D, Song B, Qi M, Hu Z Y, Nomoto K, Yan X D, Cao Y, Johnson W, Kohn E, Jena D, Xing H G 2015 IEEE Electron Device Lett. 36 375Google Scholar

    [31]

    Chen J B, Bian Z K, Liu Z H, Zhu D, Duan X L, Wu Y H, Jia Y Q, Ning J, Zhang J C, Hao Y 2021 J. Alloys Compd. 853 156978Google Scholar

    [32]

    Toumi S, Ferhat-Hamida A, Boussouar L, Sellai A, Ouennoughi A, Ryssel H, 2009 Microelectron. Eng. 86 303Google Scholar

  • 图 1  自支撑衬底凹槽阳极结构AlGaN/GaN SBD器件截面图

    Figure 1.  Schematic cross-sectional of AlGaN/GaN SBD with groove anode on free-standing GaN substrate.

    图 2  器件凹槽阳极深度

    Figure 2.  Depth of the groove anode.

    图 3  测试电阻与传输线模型电极间距的线性拟合

    Figure 3.  Linear fitting of the measured resistance versus the TLM metal pad gap.

    图 4  自支撑氮化镓衬底凹槽阳极结构AlGaN/GaN SBD的正反向I-V曲线

    Figure 4.  Forward and reverse I-V curve of the fabricated AlGaN/GaN SBD with groove anode on free-standing GaN substrate.

    图 5  不同衬底结构AlGaN/GaN SBD开启电压与反向漏电的对应关系

    Figure 5.  Benchmarking the turn-on voltage and reverse current of AlGaN/GaN SBDs with various substrate.

    图 6  (a)线性坐标和(b)对数坐标下不同阴阳极间距AlGaN/GaN SBDs正向I-V特性

    Figure 6.  Forward I-V characteristics of the fabricated AlGaN/GaN SBDs with various LAC in (a) linear-scale and (b) semi-log scale.

    图 7  半对数坐标下自支撑氮化镓衬底AGaN/GaN SBD正反向I-V特性随温度的变化关系

    Figure 7.  Temperature-dependent forward and reverse I-V characteristics of AlGaN/GaN SBD on free-standing GaN substrate in semi-log scale.

    图 8  AlGaN/GaN SBD理想因子及肖特基势垒高度随温度的变化关系

    Figure 8.  Extracted Schottky barrier height and ideality factor of AlGaN/GaN SBD as a function of the measured temperature.

    Baidu
  • [1]

    Zhang T, Wang Y, Zhang Y N, Lv Y G, Ning J, Zhang Y C, Zhou H, Duan X L, Zhang J C, Hao Y 2021 IEEE Trans. Electron Devices 68 2661Google Scholar

    [2]

    Hao R H, Li W Y, Fu K, Yu G H, Song L, Yuan J, Li J S, Deng X G, Zhang X D, Zhou Q, Fan Y M, Shi W H, Cai Y, Zhang X P, Zhang B S 2017 IEEE Electron Device Lett. 38 1567Google Scholar

    [3]

    Zhang L, Zheng Z Y, Yang S, Song W J, He J B, Chen K J 2021 IEEE Electron Device Lett. 42 22Google Scholar

    [4]

    Zhang T, Li R H, Lu J, Zhang Y N, Lv Y G, Duan X L, Xu S R, Zhang J C, Hao Y 2021 IEEE Electron Device Lett. 42 1747Google Scholar

    [5]

    Hsin Y M, Ke T Y, Lee G Y, Chyi J I, Chiu H C 2012 Phys. Status Solidi C 9 949Google Scholar

    [6]

    Nela L, Erp R V, Kampitsis G, Yildirim H K, Ma J, Matioli E 2021 IEEE Trans. Power Electron. 36 1269Google Scholar

    [7]

    Tsou C W, Wei K P, Lian Y W, Hsu S S H 2016 IEEE Electron Device Lett. 37 70Google Scholar

    [8]

    Gao J N, Wang M J, Yin R Y, Liu S F, Wen C P, Wang J Y, Wu W G, Hao Y L, Jin Y F, Shen B 2017 IEEE Electron Device Lett. 38 1425Google Scholar

    [9]

    Hu J, Stoffels S, Lenci S, Bakeroot B, Jaeger B D, Hove M V, Ronchi N, Venegas R, Liang H, Zhao M, Groeseneken G, Decoutere S 2016 IEEE Trans. Electron Devices 63 997Google Scholar

    [10]

    Li X D, Hove M V, Zhao M, Geens K, Lempinen V P, Sormunen J, Groeseneken G, Decoutere S 2017 IEEE Electron Device Lett. 38 918Google Scholar

    [11]

    Ma J, Matioli E 2018 Appl. Phys. Lett. 112 052101Google Scholar

    [12]

    Zhang T, Lv Y G, Li R H, Zhang Y N, Zhang Y C, Li X D, Zhang J C, Hao Y 2021 IEEE Electron Device Lett. 42 477Google Scholar

    [13]

    Zhou Q, Jin Y, Shi Y Y, Mou J Y, Bao X, Chen B W, Zhang B 2015 IEEE Electron Device Lett. 36 660Google Scholar

    [14]

    Bahat-Treidel E, Hilt O, Zhytnytska R, Wentzel A, Meliani C, Wurfl J, Trankle G 2012 IEEE Electron Device Lett. 33 357Google Scholar

    [15]

    Lee J G, Park B R, Cho C H, Seo K S, Cha H Y 2013 IEEE Electron Device Lett. 34 214Google Scholar

    [16]

    Xiao M, Ma Y W, Cheng K, Liu K, Xie A, Beam E, Cao Y, Zhang Y H 2020 IEEE Electron Device Lett. 41 1177Google Scholar

    [17]

    Wang T T, Wang X, He Y, Jia M, Ye Q, Xu Y, Zhang Y H, Li Y, Bai L H, Ma X H, Hao Y 2021 IEEE Trans. Electron Devices 68 2867Google Scholar

    [18]

    Ma J, Santoruvo G, Tandon P, Matioli E 2016 IEEE Trans. Electron Devices 63 3614Google Scholar

    [19]

    Gao J N, Jin Y F, Xie B, Wen C P, Hao Y L, Shen B, Wang M J 2018 IEEE Electron Device Lett. 39 859Google Scholar

    [20]

    Zhang T, Zhang Y N, Zhang J C, Li X D, Lv Y G, Hao Y 2021 IEEE Electron Device Lett. 42 304Google Scholar

    [21]

    Fu H Q, Fu K, Alugubelli S R, Cheng C Y, Huang X Q, Chen H, Yang T H, Yang C, Zhou J G, Montes J, Deng X G, Qi X, Goodnick S M, Ponce F A, Zhao Y J 2020 IEEE Electron Device Lett. 41 127Google Scholar

    [22]

    Kizilyalli I C, Edwards A P, Nie H, Disney D, Bour D 2013 IEEE Trans. Electron Devices 60 3067Google Scholar

    [23]

    Lin W, Wang M J, Yin R Y, Wei J, Wen C P, Xie B, Hao Y L, Shen B 2021 IEEE Electron Device Lett. 42 1124Google Scholar

    [24]

    Liu X K, Gu H, Li K L, Guo L C, Zhu D L, Lu Y M, Wang J F, Kuo H C, Liu Z H, Liu W J, Chen L, Fang J P, Ang K W, Xu K, Ao J P 2017 AIP Adv. 7 095305Google Scholar

    [25]

    Chu J Y, Wang Q, Jiang L J, Feng C, Li W, Liu H X, Xiao H L, Wang X L 2021 J. Electron Mater. 50 2630Google Scholar

    [26]

    Alshahed M, Heuken L, Alomari M, Cora I, Toth L, Pecz B, Wachter C, Bergunde T, Burghartz J N 2018 IEEE Trans. Electron Devices 65 2939Google Scholar

    [27]

    Gao J N, Jin Y F, Hao Y L, Xie B, Wen C P, Shen B, Wang M J 2018 IEEE Trans. Electron Devices 65 1728Google Scholar

    [28]

    Wu J Y, Lei S Q, Cheng W C, Sokolovskij R, Wang Q, Xia G R, Yu H Y 2019 J. Vac. Sci. Technol. A 37 060401Google Scholar

    [29]

    Zhang T, Zhang J C, Zhou H, Chen T S, Zhang K, Hu Z Z, Bian Z K, Dang K, Wang Y, Zhang L, Ning J, Ma P J, Hao Y 2018 IEEE Electron Device Lett. 39 1548Google Scholar

    [30]

    Zhu M D, Song B, Qi M, Hu Z Y, Nomoto K, Yan X D, Cao Y, Johnson W, Kohn E, Jena D, Xing H G 2015 IEEE Electron Device Lett. 36 375Google Scholar

    [31]

    Chen J B, Bian Z K, Liu Z H, Zhu D, Duan X L, Wu Y H, Jia Y Q, Ning J, Zhang J C, Hao Y 2021 J. Alloys Compd. 853 156978Google Scholar

    [32]

    Toumi S, Ferhat-Hamida A, Boussouar L, Sellai A, Ouennoughi A, Ryssel H, 2009 Microelectron. Eng. 86 303Google Scholar

  • [1] Wu Peng, Li Ruo-Han, Zhang Tao, Zhang Jin-Cheng, Hao Yue. Interface-state suppression of AlGaN/GaN Schottky barrier diodes with post-anode-annealing treatment. Acta Physica Sinica, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [2] Wu Peng, Zhu Hong-Yu, Wu Jin-Xing, Zhang Tao, Zhang Jin-Cheng, Hao Yue. Low leakage current and high breakdown voltage of AlGaN/GaN Schottky barrier diodes with wet-etching groove anode. Acta Physica Sinica, 2023, 72(17): 178501. doi: 10.7498/aps.72.20230709
    [3] Lei Zhen-Shuai, Sun Xiao-Wei, Liu Zi-Jiang, Song Ting, Tian Jun-Hong. Phase diagram prediction and high pressure melting characteristics of GaN. Acta Physica Sinica, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [4] Liu Cheng, Li Ming, Wen Zhang, Gu Zhao-Yuan, Yang Ming-Chao, Liu Wei-Hua, Han Chuan-Yu, Zhang Yong, Geng Li, Hao Yue. Establishment of composite leakage model and design of GaN Schottky barrier diode with stepped field plate. Acta Physica Sinica, 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [5] Wang Hai-Bo, Wan Li-Juan, Fan Min, Yang Jin, Lu Shi-Bin, Zhang Zhong-Xiang. Barrier-tunable gallium oxide Schottky diode. Acta Physica Sinica, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [6] Peng Chao, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Chen Yi-Qiang, Lu Guo-Guang, Huang Yun. Damage mechanism of SiC Schottky barrier diode irradiated by heavy ions. Acta Physica Sinica, 2022, 71(17): 176101. doi: 10.7498/aps.71.20220628
    [7] Chen Rui, Liang Ya-Nan, Han Jian-Wei, Wang Xuan, Yang Han, Chen Qian, Yuan Run-Jie, Ma Ying-Qi, Shangguan Shi-Peng. Single event effect and total dose effect of GaN high electron mobility transistor using heavy ions and gamma rays. Acta Physica Sinica, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [8] Yuan Ying-Kuo, Guo Wei-Ling, Du Zai-Fa, Qian Feng-Song, Liu Ming, Wang Le, Xu Chen, Yan Qun, Sun Jie. Applications of graphene transistor optimized fabrication process in monolithic integrated driving gallium nitride micro-light-emitting diode. Acta Physica Sinica, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [9] Composite device model and quasi-vertical GaN SBD with stepped field plate achieving BFOM of 73.81MW/cm2. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211917
    [10] Barrier Tunable Gallium oxide Schottky diode. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211536
    [11] Zhu Yan-Xu, Song Hui-Hui, Wang Yue-Hua, Li Lai-Long, Shi Dong. Design and fabrication of high electron mobility transistor devices with gallium nitride-based. Acta Physica Sinica, 2017, 66(24): 247203. doi: 10.7498/aps.66.247203
    [12] Liu Yu-An, Zhuang Yi-Qi, Du Lei, Su Ya-Hui. 1/f noise characterization gamma irradiation of GaN-based blue light-emitting diode. Acta Physica Sinica, 2013, 62(14): 140703. doi: 10.7498/aps.62.140703
    [13] Gao Hui, Kong Fan-Min, Li Kang, Chen Xin-Lian, Ding Qing-An, Sun Jing. Structural optimization of GaN blue light LED with double layers of photonic crystals. Acta Physica Sinica, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [14] Li Shui-Qing, Wang Lai, Han Yan-Jun, Luo Yi, Deng He-Qing, Qiu Jian-Sheng, Zhang Jie. A new growth method of roughed p-GaN in GaN-based light emitting diodes. Acta Physica Sinica, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [15] Liu Wen-Bao, Zhao De-Gang, Jiang De-Sheng, Liu Zong-Shun, Zhu Jian-Jun, Zhang Shu-Ming, Yang Hui. Abnormal photoabsorption in high resistance GaN epilayer. Acta Physica Sinica, 2010, 59(11): 8048-8051. doi: 10.7498/aps.59.8048
    [16] Jia Lu, Xie Er-Qing, Pan Xiao-Jun, Zhang Zhen-Xing. Optical properties of amorphous GaN films deposited by sputtering. Acta Physica Sinica, 2009, 58(5): 3377-3382. doi: 10.7498/aps.58.3377
    [17] Zhao Chun, Zhang Qin-Yuan, Chen Dong-Dan, Jiang Zhong-Hong. Blue-upconversion in thulium and ytterbium codoped tellurite-gallium glasses pumped by laser diodes. Acta Physica Sinica, 2007, 56(7): 4194-4199. doi: 10.7498/aps.56.4194
    [18] Zhang Jian-Ming, Zou De-Shu, Liu Si-Nan, Xu Chen, Shen Guang-Di. A novel AlGaInP thin-film light emitting diode with omni directional reflector. Acta Physica Sinica, 2007, 56(5): 2905-2909. doi: 10.7498/aps.56.2905
    [19] Liu Nai-Xin, Wang Huai-Bing, Liu Jian-Ping, Niu Nan-Hui, Han Jun, Shen Guang-Di. Growth of p-GaN at low temperature and its properties as light emitting diodes. Acta Physica Sinica, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [20] LI HONG-WEI, WANG TAI-HONG. THE INFLUENCE OF InAs QUANTUM DOTS ON THE TRANSPORT PROPERTIES OF SCHOTTKY DIODE. Acta Physica Sinica, 2001, 50(12): 2501-2505. doi: 10.7498/aps.50.2501
Metrics
  • Abstract views:  5459
  • PDF Downloads:  151
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2022
  • Accepted Date:  16 February 2022
  • Available Online:  25 July 2022
  • Published Online:  05 August 2022

/

返回文章
返回
Baidu
map