Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Growth of monolayer MoS2 films dual-assisted by NaCl

Wang Fen-Tao Fan Teng Zhang Shi-Xiong Sun Zhen-Hao Fu Lei Jia Wei Shen Bo Tang Ning

Citation:

Growth of monolayer MoS2 films dual-assisted by NaCl

Wang Fen-Tao, Fan Teng, Zhang Shi-Xiong, Sun Zhen-Hao, Fu Lei, Jia Wei, Shen Bo, Tang Ning
PDF
HTML
Get Citation
  • In recent years, transition metal dichalcogenides materials represented by monolayer molybdenum disulfide (MoS2) have aroused great interest due to their excellent optical and electrical properties. The synthesis method of high-quality monolayer MoS2 film is a key problem for scientific research and industrial application. Recently, researchers have proposed a salt-assisted chemical vapor deposition method for growing the monolayer films, which greatly promotes the growth rate and quality of monolayer film. By using this method, we design a growth source of semi-enclosed quartz boat, and successfully obtain high-quality monolayer MoS2 films by using the double auxiliary action of sodium chloride (NaCl). Scanning electron microscopy shows the excellent film formation, and the photoluminescence spectra show that the luminescence intensity is significantly higher than that of the sample grown without NaCl. The NaCl double-assisted growth method proposed in this study can reduce the growth temperature of MoS2, shorten the growth time, and improve the optical properties of the films. Besides, the operation is simple and the cost is low, which provides an idea for growing the large-scale two-dimensional materials.
      Corresponding author: Jia Wei, jiawei@tyut.edu.cn ; Tang Ning, ntang@pku.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFE0125700) and the National Natural Science Foundation of China (Grant Nos. 61574006, 61927806).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, DUbonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Xie Y, Wang Z, Zhan Y, Zhang P, Wu R, Jiang T, Wu S, Wang H, Zhao Y, Nan T, Ma X 2017 Nanotechnology 28 084001Google Scholar

    [3]

    Chen J, Zhao X, Tan S J, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Tang W, Li L, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar

    [4]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43Google Scholar

    [5]

    徐依全, 王聪 2020 69 184216Google Scholar

    Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar

    [6]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [7]

    Yu Z, Ong Z Y, Li S, Xu J B, Zhang G, Zhang Y W, Shi Y, Wang X 2017 Adv. Funct. Mater. 27 1604093Google Scholar

    [8]

    Han T, Liu H, Wang S, Chen S, Li W, Yang X, Cai M, Yang K 2019 Nanomaterials 9 740Google Scholar

    [9]

    Lembke D, Kis A 2012 ACS Nano 6 10070Google Scholar

    [10]

    Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J, Li L J 2013 Adv. Mater. 25 3456Google Scholar

    [11]

    Yin X B, Ye Z L, Chenet D A, Ye Y, Brien K O, Hone J C, Zhang X 2014 Science 344 488Google Scholar

    [12]

    樊子冉, 孔洋洋, 李宇豪, 李志, 贾婷婷 2019 人工晶体学报 48 1190Google Scholar

    Fan Z R, Kong Y Y, Li Y H, Li Z, Jia T T 2019 J. Synth. Cryst. 48 1190Google Scholar

    [13]

    Fu D, Zhao X, Zhang Y Y, Li L, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T, Ding Z, Fu W, Shin T J, Shin H S, Pantelides S T, Zhou W, Loh K P 2017 J. Am. Chem. Soc. 139 9392Google Scholar

    [14]

    Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H 2011 Angew. Chem. Int. Ed. 50 11093Google Scholar

    [15]

    Wang S, Rong Y, Fan Y, Pacios M, Bhaskaran H, He K, Warner J H 2014 Chem. Mater. 26 6371Google Scholar

    [16]

    魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 63 217802Google Scholar

    Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Shi Y 2014 Acta Phys. Sin. 63 217802Google Scholar

    [17]

    Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453Google Scholar

    [18]

    Liu X, Fechler N, Antonietti M 2013 Chem. Soc. Rev. 42 8237Google Scholar

    [19]

    Huang L, Hu Z, Jin H, Wu J, Liu K, Xu Z, Wan J, Zhou H, Duan J, Hu B, Zhou J 2020 Adv. Funct. Mater. 30 1908486Google Scholar

    [20]

    Chen K, Chen Z, Wan X, Zheng Z, Xie F, Chen W, Gui X, Chen H, Xie W, Xu J 2017 Adv. Mater. 29 1700704Google Scholar

    [21]

    Xie Y, Ma X, Wang Z, Nan T, Wu R, Zhang P, Wang H, Wang Y, Zhan Y, Hao Y 2018 MRS Adv. 3 365Google Scholar

    [22]

    Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X, Huan Y, Xie C, Gao P, Chen Q, Zhang Q, Liu Z, Zhang Y 2018 Nat. Commun. 9 979Google Scholar

    [23]

    Lin Y C, Yeh C H, Lin H C, Siao M D, Liu Z, Nakajima H, Okazaki T, Chou M Y, Suenaga K, Chiu P W 2018 ACS Nano 12 12080Google Scholar

    [24]

    Pandey S K, Alsalman H, Azadani J G, Izquierdo N, Low T, Campbell S A 2018 Nanoscale 10 21374Google Scholar

    [25]

    Huan Y, Shi J, Zou X, Gong Y, Xie C, Yang Z, Zhang Z, Gao Y, Shi Y, Li M, Yang P, Jiang S, Hong M, Gu L, Zhang Q, Yan X, Zhang Y 2019 J. Am. Chem. Soc. 141 18694Google Scholar

    [26]

    Li P, Cui J, Zhou J, Guo D, Zhao Z, Yi J, Fan J, Ji Z, Jing X, Qu F, Yang C, Lu L, Lin J, Liu Z, Liu G 2019 Adv. Mater. 31 e1904641Google Scholar

    [27]

    Lan F, Yang R, Xu Y, Qian S, Zhang S, Cheng H, Zhang Y 2018 Nanomaterials 8 100Google Scholar

    [28]

    Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu C H, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G, Liu Z 2018 Nature 556 355Google Scholar

    [29]

    Chen L, Zang L, Chen L, Wu J, Jiang C, Song J 2021 CrystEngComm 23 5337Google Scholar

    [30]

    Li S, Wang S, Tang D M, Zhao W, Xu H, Chu L, Bando Y, Golberg D, Eda G 2015 Appl. Mater. Today 1 60Google Scholar

    [31]

    Wang P, Lei J, Qu J, Cao S, Jiang H, He M, Shi H, Sun X, Gao B, Liu W 2019 Chem. Mater. 31 873Google Scholar

    [32]

    Xie C, Yang P, Huan Y, Cui F, Zhang Y 2020 Dalton Trans. 49 10319Google Scholar

    [33]

    Wang W, Shu H, Wang J, Cheng Y, Liang P, Chen X 2020 ACS Appl. Mater. Interfaces 12 9563Google Scholar

    [34]

    Song J G, Ryu G H, Lee S J, Sim S, Lee C W, Choi T, Jung H, Kim Y, Lee Z, Myoung J M, Dussarrat C, Lansalot-Matras C, Park J, Choi H, Kim H 2015 Nat. Commun. 6 7817Google Scholar

    [35]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [36]

    Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F, Shan J 2013 Nat. Mater. 12 207Google Scholar

  • 图 1  (a) 生长装置示意图; (b) 盛放Mo源的半封闭式石英舟; (c) 温度变化趋势图

    Figure 1.  (a) Schematic illustrations of the experimental set-up; (b) semi-enclosed quartz boat for Mo source; (c) temperature program for the growth

    图 2  不同生长时间下的MoS2光学显微镜图像 (a) 10 min; (b) 15 min, 内插图为单个MoS2的AFM图; (c) 20 min

    Figure 2.  Optical microscope images of MoS2 at different growth times: (a) 10 min; (b) 15 min, the inside image is AFM diagram of single MoS2; (c) 20 min

    图 3  Mo源中加入不同NaCl量的光学显微镜图像 (a) 0 mg; (b) 5 mg; (c) 10 mg, 内插图为单个MoS2的AFM图; (d) 15 mg

    Figure 3.  Optical microscope images of Mo source with different amounts of NaCl: (a) 0 mg; (b) 5 mg; (c) 10 mg, the inside image is an AFM diagram of single MoS2; (d) 15 mg

    图 4  衬底上添加不同浓度NaCl的光学显微镜图像 (a) 0.1 mmol/L; (b) 0.3 mmol/L, 内插图为单个MoS2的AFM图; (c) 0.5 mmol/L

    Figure 4.  Optical microscope images of different concentrations of NaCl: (a) 0.1 mmol/L; (b) 0.3 mmol/L, the inside image is an AFM diagram of single MoS2; (c) 0.5 mmol/L.

    图 5  (a)—(c) 不同浓度的NaCl搭配下的光学显微镜图像 (a) 10 mg + 0.1 mmol/L; (b) 10 mg + 0.3 mmol/L, 内插图为MoS2边界的AFM图; (c) 10 mg + 0.5 mmol/L. (d) 10 mg + 0.3 mmol/L条件下生长的MoS2在Si衬底的照片以及左中右三块区域的大范围SEM图像

    Figure 5.  (a)–(c) Optical microscope images with different concentrations of NaCl: (a) 10 mg + 0.1 mmol/L; (b) 10 mg + 0.3 mmol/L, the inside image is an AFM diagram of MoS2 boundary; (c) 10 mg + 0.5 mmol/L. (d) Photographs of MoS2 grown under the condition of 10 mg + 0.3 mmol/L and large range SEM images corresponding to the three regions of left, middle and right

    图 8  (a) 4种在不同位置添加NaCl生长的单层MoS2的PL光谱; (b) 4种样品的归一化PL光谱

    Figure 8.  (a) PL spectra of four monolayer MoS2 grown at different locations with NaCl addition; (b) normalized PL spectra of four samples

    图 6  在不同位置添加NaCl生长的MoS2的拉曼图

    Figure 6.  Raman spectra of MoS2 growing at different locations of NaCl

    图 7  掺入NaCl和未掺入NaCl条件下合成单层MoS2的XPS表征, 其中(a)—(c)分别是(a) Mo 3d, (b) S 2p和(c) Na 1s的XPS图; (d) XPS全谱

    Figure 7.  XPS characterizations of monolayer MoS2 synthesized with NaCl and without NaCl. The XPS spectra of two MoS2 samples: (a) Mo 3d; (b) S 2p; (c) Na 1s. (d) The full spectrum of XPS

    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, DUbonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Xie Y, Wang Z, Zhan Y, Zhang P, Wu R, Jiang T, Wu S, Wang H, Zhao Y, Nan T, Ma X 2017 Nanotechnology 28 084001Google Scholar

    [3]

    Chen J, Zhao X, Tan S J, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Tang W, Li L, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar

    [4]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43Google Scholar

    [5]

    徐依全, 王聪 2020 69 184216Google Scholar

    Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar

    [6]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [7]

    Yu Z, Ong Z Y, Li S, Xu J B, Zhang G, Zhang Y W, Shi Y, Wang X 2017 Adv. Funct. Mater. 27 1604093Google Scholar

    [8]

    Han T, Liu H, Wang S, Chen S, Li W, Yang X, Cai M, Yang K 2019 Nanomaterials 9 740Google Scholar

    [9]

    Lembke D, Kis A 2012 ACS Nano 6 10070Google Scholar

    [10]

    Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J, Li L J 2013 Adv. Mater. 25 3456Google Scholar

    [11]

    Yin X B, Ye Z L, Chenet D A, Ye Y, Brien K O, Hone J C, Zhang X 2014 Science 344 488Google Scholar

    [12]

    樊子冉, 孔洋洋, 李宇豪, 李志, 贾婷婷 2019 人工晶体学报 48 1190Google Scholar

    Fan Z R, Kong Y Y, Li Y H, Li Z, Jia T T 2019 J. Synth. Cryst. 48 1190Google Scholar

    [13]

    Fu D, Zhao X, Zhang Y Y, Li L, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T, Ding Z, Fu W, Shin T J, Shin H S, Pantelides S T, Zhou W, Loh K P 2017 J. Am. Chem. Soc. 139 9392Google Scholar

    [14]

    Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H 2011 Angew. Chem. Int. Ed. 50 11093Google Scholar

    [15]

    Wang S, Rong Y, Fan Y, Pacios M, Bhaskaran H, He K, Warner J H 2014 Chem. Mater. 26 6371Google Scholar

    [16]

    魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 63 217802Google Scholar

    Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Shi Y 2014 Acta Phys. Sin. 63 217802Google Scholar

    [17]

    Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453Google Scholar

    [18]

    Liu X, Fechler N, Antonietti M 2013 Chem. Soc. Rev. 42 8237Google Scholar

    [19]

    Huang L, Hu Z, Jin H, Wu J, Liu K, Xu Z, Wan J, Zhou H, Duan J, Hu B, Zhou J 2020 Adv. Funct. Mater. 30 1908486Google Scholar

    [20]

    Chen K, Chen Z, Wan X, Zheng Z, Xie F, Chen W, Gui X, Chen H, Xie W, Xu J 2017 Adv. Mater. 29 1700704Google Scholar

    [21]

    Xie Y, Ma X, Wang Z, Nan T, Wu R, Zhang P, Wang H, Wang Y, Zhan Y, Hao Y 2018 MRS Adv. 3 365Google Scholar

    [22]

    Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X, Huan Y, Xie C, Gao P, Chen Q, Zhang Q, Liu Z, Zhang Y 2018 Nat. Commun. 9 979Google Scholar

    [23]

    Lin Y C, Yeh C H, Lin H C, Siao M D, Liu Z, Nakajima H, Okazaki T, Chou M Y, Suenaga K, Chiu P W 2018 ACS Nano 12 12080Google Scholar

    [24]

    Pandey S K, Alsalman H, Azadani J G, Izquierdo N, Low T, Campbell S A 2018 Nanoscale 10 21374Google Scholar

    [25]

    Huan Y, Shi J, Zou X, Gong Y, Xie C, Yang Z, Zhang Z, Gao Y, Shi Y, Li M, Yang P, Jiang S, Hong M, Gu L, Zhang Q, Yan X, Zhang Y 2019 J. Am. Chem. Soc. 141 18694Google Scholar

    [26]

    Li P, Cui J, Zhou J, Guo D, Zhao Z, Yi J, Fan J, Ji Z, Jing X, Qu F, Yang C, Lu L, Lin J, Liu Z, Liu G 2019 Adv. Mater. 31 e1904641Google Scholar

    [27]

    Lan F, Yang R, Xu Y, Qian S, Zhang S, Cheng H, Zhang Y 2018 Nanomaterials 8 100Google Scholar

    [28]

    Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu C H, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G, Liu Z 2018 Nature 556 355Google Scholar

    [29]

    Chen L, Zang L, Chen L, Wu J, Jiang C, Song J 2021 CrystEngComm 23 5337Google Scholar

    [30]

    Li S, Wang S, Tang D M, Zhao W, Xu H, Chu L, Bando Y, Golberg D, Eda G 2015 Appl. Mater. Today 1 60Google Scholar

    [31]

    Wang P, Lei J, Qu J, Cao S, Jiang H, He M, Shi H, Sun X, Gao B, Liu W 2019 Chem. Mater. 31 873Google Scholar

    [32]

    Xie C, Yang P, Huan Y, Cui F, Zhang Y 2020 Dalton Trans. 49 10319Google Scholar

    [33]

    Wang W, Shu H, Wang J, Cheng Y, Liang P, Chen X 2020 ACS Appl. Mater. Interfaces 12 9563Google Scholar

    [34]

    Song J G, Ryu G H, Lee S J, Sim S, Lee C W, Choi T, Jung H, Kim Y, Lee Z, Myoung J M, Dussarrat C, Lansalot-Matras C, Park J, Choi H, Kim H 2015 Nat. Commun. 6 7817Google Scholar

    [35]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [36]

    Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F, Shan J 2013 Nat. Mater. 12 207Google Scholar

  • [1] Wu Peng, Tan Lun, Li Wei, Cao Li-Wei, Zhao Jun-Bo, Qu Yao, Li Ang. Preparation and photoelectric property of large scale monolayer MoS2. Acta Physica Sinica, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [2] Li Lu, Zhang Yang-Kun, Shi Dong-Xia, Zhang Guang-Yu. Cotrollable growth of monolayer MoS2 films and their applications in devices. Acta Physica Sinica, 2022, 71(10): 108102. doi: 10.7498/aps.71.20212447
    [3] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [4] Fei Xiang, Zhang Xiu-Mei, Fu Quan-Gui, Cai Zheng-Yang, Nan Hai-Yan, Gu Xiao-Feng, Xiao Shao-Qing. Milimeter-level MoS2 monolayers and WS2-MoS2 heterojunctions grown on molten glass by pre-chemical vapor deposition. Acta Physica Sinica, 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [5] Jiang Li-Ying, Yi Ying-Ting, Yi Zao, Yang Hua, Li Zhi-You, Su Ju, Zhou Zi-Gang, Chen Xi-Fang, Yi You-Gen. A four-band perfect absorber based on high quality factor and high figure of merit of monolayer molybdenum disulfide. Acta Physica Sinica, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [6] Liu Kai-Long, Peng Dong-Sheng. Effects of photoelectric properties of monolayer MoS2 under tensile strain. Acta Physica Sinica, 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [7] Wang Shuo, Wang Wen-Hui, Lü Jun-Peng, Ni Zhen-Hua. Chemical vapor deposition growth of large-areas two dimensional materials: Approaches and mechanisms. Acta Physica Sinica, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [8] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [9] Wei Zheng, Wang Qin-Qin, Guo Yu-Tuo, Li Jia-Wei, Shi Dong-Xia, Zhang Guang-Yu. Research progress of high-quality monolayer MoS2 films. Acta Physica Sinica, 2018, 67(12): 128103. doi: 10.7498/aps.67.20180732
    [10] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [11] Zhang Xin-Cheng, Liao Wen-Hu, Zuo Min. Electronic structure and spin/valley transport properties of monolayer MoS2 under the irradiation of the off-resonant circularly polarized light. Acta Physica Sinica, 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [12] Wei Yang, Ma Xin-Guo, Zhu Lin, He Hua, Huang Chu-Yun. Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure. Acta Physica Sinica, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [13] Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong. Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide. Acta Physica Sinica, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [14] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. First-principles study on multiphase property and phase transition of monolayer MoS2. Acta Physica Sinica, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [15] Dong Yan-Fang, He Da-Wei, Wang Yong-Sheng, Xu Hai-Teng, Gong Zhe. Synthesis of large size monolayer MoS2 with a simple chemical vapor deposition. Acta Physica Sinica, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [16] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [17] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [18] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [19] Yu Wei, Liu Li-Hui, Hou Hai-Hong, Ding Xue-Cheng, Han Li, Fu Guang-Sheng. Silicon nitride films prepared by helicon wave plasam-enhanced chemical vapour deposition. Acta Physica Sinica, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [20] CHEN XIAO-HUA, WU GUO-TAO, DENG FU-MING, WANG JIAN-XIONG, YANG HANG-SHENG, WANG MIAO, LU XIAO-NAN, PENG JING-CUI, LI WEN-ZHU. GROWING CARBON BUCKONIONS BY RADIO FREQUENCY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
Metrics
  • Abstract views:  6065
  • PDF Downloads:  257
  • Cited By: 0
Publishing process
  • Received Date:  14 February 2022
  • Accepted Date:  17 April 2022
  • Available Online:  06 June 2022
  • Published Online:  20 June 2022

/

返回文章
返回
Baidu
map