-
Exploring the structure of low-dimensional materials is a key step towards a complete understanding of condensed matter. In recent years, owing to the fast developing of research tools, novel structures of many elements have been reported, revealing the possibility of new properties. Refining the investigation of one-dimensional atomic chain structures has thus received a great amount of attention in the field of condensed matter physics, materials science and chemistry. In this paper, we review the recent advances in the study of confined structures under nanometer environments. We mainly discuss the most interesting structures revealed and the experimental and theoretical methods adopted in these researches, and we also briefly discuss the properties related to the new structures. We particularly focus on elemental materials, which show the richness of one-dimensional structures in vacuum and in nanoconfinement. By understanding the binding and stability of various structures and their properties, we expect that one-dimensional materials should attract a broad range of interest in new materials discovery and new applications. Moreover, we reveal the challenges in accurate theoretical simulations of one-dimensional materials in nanoconfinement, and we provide an outlook of how to overcome such challenges in the future.
-
Keywords:
- one-dimensional material /
- nano-structure /
- nanoconfinement
[1] Zhu C Q, Gao Y R, Zhu W D, Liu Y, Francisco J S, Zeng X C 2020 J. Phys. Chem. Lett. 11 7449Google Scholar
[2] Georgakilas V, Perman J A, Tucek J, Zboril R 2015 Chem. Rev. 115 4744Google Scholar
[3] De Volder M F L, Tawfick S H, Baughman R H, Hart A 2013 Science 339 535Google Scholar
[4] Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132Google Scholar
[5] Charlier J C, Blase X, Roche S 2007 Rev. Mod. Phys. 79 677Google Scholar
[6] Pitzer K S, Clementi E 1959 J. Am. Chem. Soc. 81 4477Google Scholar
[7] Gibtner T, Hampel F, Gisselbrecht J P, Hirsch A 2002 Chem. Eur. J. 8 408Google Scholar
[8] Chalifoux W A, Tykwinski R R 2010 Nat. Chem. 2 967Google Scholar
[9] Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala1 P, Pichler T 2016 Nat. Mater. 15 634Google Scholar
[10] Yao Z, Liu C J, Li Y, Jing X D, Meng F S, Zheng S P, Zhao X, Li J H, Qiu Z Y, Yuan Y, Wang W X, Bi L, Liu H, Zhang Y P, Liu B B 2016 Chin. Phys. B 25 096105Google Scholar
[11] Fan L L, Yang D R, Li D S 2021 Materials 14 3964Google Scholar
[12] Luo K, Zhao Z S, Ma M D, Zhang S S, Yuan X H, Gao G Y, Zhou X F, He J L, Yu D L, Liu Z G, Xu B, Tian Y J 2016 Chem. Mater. 28 6441Google Scholar
[13] Sung H J, Han W H, Lee I H, Chang K J 2018 Phys. Rev. Lett. 120 157001Google Scholar
[14] Huang W Q, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2020 J. Appl. Phys. 128 215108Google Scholar
[15] Yang T H, Chen C H, Chatterjee A, Li H Y, Lo J T, Wu C T, Chen K H, Chen L C 2003 Chem. Phys. Lett. 379 155Google Scholar
[16] Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Yang Y, Hu L B, Cui Y 2012 Nat. Nanotechnol. 7 310Google Scholar
[17] Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar
[18] Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L B, Nix W D, Cui Y 2011 Nano Lett. 11 2949Google Scholar
[19] Olijnyk H, Sikka S K, Holzapfel W B 1984 Phys. Lett. A 103 137Google Scholar
[20] Khokhlov A F, Mashin A I, Khokhlov D A 1998 JETP Lett. 67 675Google Scholar
[21] Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863Google Scholar
[22] Liu M J, Artyukhov V I, Yakobson B I 2017 J. Am. Chem. Soc. 139 2111Google Scholar
[23] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar
[24] Abou-Rachid H, Hu A G, Timoshevskii V, Song Y F, Lussier L S 2008 Phys. Rev. Lett. 100 196401Google Scholar
[25] Ji W, Timoshevskii V, Guo H, Abou-Rachid H, Lussier L S 2009 Appl. Phys. Lett. 95 021904Google Scholar
[26] Li Y L, Bai H C, Lin F X, Huang Y H 2018 Physica E 103 444Google Scholar
[27] Kramberger C, Thurakitseree T, Koh H, Izumi Y, Kinoshita T, Muro T, Einarsson E, Maruyama S 2013 Carbon 55 196Google Scholar
[28] Hart M, White E R, Chen J, McGilvery C M, Pickard C J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2017 Angew. Chem. Int. Ed. 56 8144Google Scholar
[29] Zhang J Y, Fu C C, Song S X, Du H C, Zhao D, Huang H Y, Zhang L H, Guan J, Zhang Y F, Zhao X L, Ma C S, Jia C L, Tománek D 2020 Nano Lett. 20 1280Google Scholar
[30] Deringer V L, Pickard C J, Proserpio D M. 2020 Angew. Chem. Int. Ed. 59 15880Google Scholar
[31] Hart M, Chen J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2018 Angew. Chem. Int. Ed. 57 11649Google Scholar
[32] Hart M, Chen J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2019 Inorg. Chem. 58 15216Google Scholar
[33] Kitaura R, Kitagawa S, Kubota Y, Kobayashi Tatsuo C, Kindo K, Mita Y, Matsuo A, Kobayashi M, Chang H C, Ozawa T C, Suzuki M, Sakata M, Masaki T 2002 Science 298 2358Google Scholar
[34] Hanami K, Umesaki T, Matsuda K, Miyata Y, Kataura H, Okabe Y, Maniwa Y 2010 J. Phys. Soc. Jpn. 79 023601Google Scholar
[35] Hagiwara M, Ikeda M, Kida T, Matsuda K, Tadera S, Kyakuno H, Yanagi K, Maniwa Y, Okunishi K 2014 J. Phys. Soc. Jpn. 83 113706Google Scholar
[36] Massote D V P, Mazzoni M S C 2014 J. Phys. Chem. C 118 24741Google Scholar
[37] Ji X L, Lee K T, Nazar L F 2009 Nat. Mater. 8 500Google Scholar
[38] Springborg M, Jones R O 1986 Phys. Rev. Lett. 57 1145Google Scholar
[39] Fujimori T, Morelos A, Zhu Z, Muramatsu H, Futamura1 R, Urita K, Terrones M, Hayashi T, Endo M, Hong S Y, ChoI Y C, Tomanek D, Kaneko Katsumi 2013 Nat. Commun. 4 2162Google Scholar
[40] Chancolon J, Archaimbault F, Bonnamy S, Traverse A, Olivi L, Vlaic G 2006 J. Non-Cryst. Solids 352 99Google Scholar
[41] Fujimori T, dos Santos R B, Hayashi T, Endo M, Kaneko K, Tománek D 2013 ACS Nano 7 5607Google Scholar
[42] Grigorian L, Williams K A, Fang S, Sumanasekera G U, Loper A L, Dickey E C, Pennycook S J, Eklund P C 1998 Phys. Rev. Lett. 80 5560Google Scholar
[43] Fan X, Dickey E C, Eklund P C, Williams K A, Grigorian L, Buczko R, Pantelides S T, Pennycook S J 2000 Phys. Rev. Lett. 84 4621Google Scholar
[44] Guan L H, Suenaga K, Shi Z J, Gu Z N, Iijima S 2007 Nano Lett. 7 1532Google Scholar
[45] Komsa H P, Senga R, Suenaga K, Krasheninnikov A V 2017 Nano Lett. 17 3694Google Scholar
-
图 3 碳纳米管中一维P((a)—(c))和As((d)—(f))链结构高分辨率透射电子显微镜图像及其相应的结构示意图[32]. 每幅图显示了实验图像(左)、模拟图像(中)以及相应原子模型(右). 结构包括P4/As4结构((a)和(d))、锯齿梯形结构((b)和(e)), 以及锯齿单链结构((c)和(f))
Figure 3. High resolution transmission electron microscopy (HRTEM) imaging and structure models for one-dimensional phosphorus ((a)–(c)) and arsenic ((d)–(f)) in carbon nanotube[32]. In each panel, from left to right is experimental image, simulated image and structure model, respectively. The structures include the tetrahedral molecular structure ((a), (d)), the zigzag ladder structure ((b), (e)) and the single zigzag chain structure ((c), (f)).
图 4 O元素(a)和S元素(b)的典型一维同素异形体链结构示意图[34] (a) 从上到下分别是长方体笼型O8链、交叉梯形结构和锯齿梯形结构; (b) 从上往下依次是单链结构、双链结构和锯齿单链结构
Figure 4. One-dimensional allotropes of oxygen (a) and sulfur (b) [34]: (a) It shows a O8 chain, an alternating ladder structure and a zigzag ladder structure from top to bottom; (b) It shows a single chain, a double chain and a zigzag chain structure from top to bottom.
图 5 (a) 单臂碳纳米管中一维直线型硫链的高分辨透射电子显微镜图像[39]; (b) 单臂碳纳米管中锯齿型硫链结构的高分辨透射电子显微镜图像[39]; (c) 双臂碳纳米管中的一维线性链的高分辨透射电子显微镜图像[39]; (d) 图(a)—(c)中结构对应的X射线衍射谱[39]
Figure 5. (a) HRTEM images of one-dimensional linear sulfur chain in single-wall carbon nanotube (CNT) [39]; (b) HRTEM images of the zigzag sulfur chain in single-wall CNT[39]; (c) HRTEM images of linear sulfur chain in double-wall CNT[39]; (d) X-ray diffraction curves of structures in panels (a)–(c)[39].
图 6 用单壁碳纳米管封装的碘原子链的高分辨电子显微镜图像[44] (a) 直径(1.05 ± 0.05) nm单壁碳纳米管中的单螺旋碘链结构; (b) 直径(1.30 ± 0.05) nm单壁碳纳米管中的双螺旋碘链结构; (c) 直径(1.40 ± 0.05) nm单壁碳纳米管中的三螺旋碘链结构图
Figure 6. HRTEM images of one-dimensional iodine chain in single-wall CNT[44]: (a) Single helical iodine structure in CNT with diameter of (1.05 ± 0.05) nm; (b) double helical iodine structure in CNT with diameter of (1.35 ± 0.05) nm; (c) triple helical iodine structure in CNT with diameter of (1.45 ± 0.05) nm.
-
[1] Zhu C Q, Gao Y R, Zhu W D, Liu Y, Francisco J S, Zeng X C 2020 J. Phys. Chem. Lett. 11 7449Google Scholar
[2] Georgakilas V, Perman J A, Tucek J, Zboril R 2015 Chem. Rev. 115 4744Google Scholar
[3] De Volder M F L, Tawfick S H, Baughman R H, Hart A 2013 Science 339 535Google Scholar
[4] Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132Google Scholar
[5] Charlier J C, Blase X, Roche S 2007 Rev. Mod. Phys. 79 677Google Scholar
[6] Pitzer K S, Clementi E 1959 J. Am. Chem. Soc. 81 4477Google Scholar
[7] Gibtner T, Hampel F, Gisselbrecht J P, Hirsch A 2002 Chem. Eur. J. 8 408Google Scholar
[8] Chalifoux W A, Tykwinski R R 2010 Nat. Chem. 2 967Google Scholar
[9] Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala1 P, Pichler T 2016 Nat. Mater. 15 634Google Scholar
[10] Yao Z, Liu C J, Li Y, Jing X D, Meng F S, Zheng S P, Zhao X, Li J H, Qiu Z Y, Yuan Y, Wang W X, Bi L, Liu H, Zhang Y P, Liu B B 2016 Chin. Phys. B 25 096105Google Scholar
[11] Fan L L, Yang D R, Li D S 2021 Materials 14 3964Google Scholar
[12] Luo K, Zhao Z S, Ma M D, Zhang S S, Yuan X H, Gao G Y, Zhou X F, He J L, Yu D L, Liu Z G, Xu B, Tian Y J 2016 Chem. Mater. 28 6441Google Scholar
[13] Sung H J, Han W H, Lee I H, Chang K J 2018 Phys. Rev. Lett. 120 157001Google Scholar
[14] Huang W Q, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2020 J. Appl. Phys. 128 215108Google Scholar
[15] Yang T H, Chen C H, Chatterjee A, Li H Y, Lo J T, Wu C T, Chen K H, Chen L C 2003 Chem. Phys. Lett. 379 155Google Scholar
[16] Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Yang Y, Hu L B, Cui Y 2012 Nat. Nanotechnol. 7 310Google Scholar
[17] Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar
[18] Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L B, Nix W D, Cui Y 2011 Nano Lett. 11 2949Google Scholar
[19] Olijnyk H, Sikka S K, Holzapfel W B 1984 Phys. Lett. A 103 137Google Scholar
[20] Khokhlov A F, Mashin A I, Khokhlov D A 1998 JETP Lett. 67 675Google Scholar
[21] Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863Google Scholar
[22] Liu M J, Artyukhov V I, Yakobson B I 2017 J. Am. Chem. Soc. 139 2111Google Scholar
[23] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar
[24] Abou-Rachid H, Hu A G, Timoshevskii V, Song Y F, Lussier L S 2008 Phys. Rev. Lett. 100 196401Google Scholar
[25] Ji W, Timoshevskii V, Guo H, Abou-Rachid H, Lussier L S 2009 Appl. Phys. Lett. 95 021904Google Scholar
[26] Li Y L, Bai H C, Lin F X, Huang Y H 2018 Physica E 103 444Google Scholar
[27] Kramberger C, Thurakitseree T, Koh H, Izumi Y, Kinoshita T, Muro T, Einarsson E, Maruyama S 2013 Carbon 55 196Google Scholar
[28] Hart M, White E R, Chen J, McGilvery C M, Pickard C J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2017 Angew. Chem. Int. Ed. 56 8144Google Scholar
[29] Zhang J Y, Fu C C, Song S X, Du H C, Zhao D, Huang H Y, Zhang L H, Guan J, Zhang Y F, Zhao X L, Ma C S, Jia C L, Tománek D 2020 Nano Lett. 20 1280Google Scholar
[30] Deringer V L, Pickard C J, Proserpio D M. 2020 Angew. Chem. Int. Ed. 59 15880Google Scholar
[31] Hart M, Chen J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2018 Angew. Chem. Int. Ed. 57 11649Google Scholar
[32] Hart M, Chen J, Michaelides A, Sella A, Shaffer M S P, Salzmann C G 2019 Inorg. Chem. 58 15216Google Scholar
[33] Kitaura R, Kitagawa S, Kubota Y, Kobayashi Tatsuo C, Kindo K, Mita Y, Matsuo A, Kobayashi M, Chang H C, Ozawa T C, Suzuki M, Sakata M, Masaki T 2002 Science 298 2358Google Scholar
[34] Hanami K, Umesaki T, Matsuda K, Miyata Y, Kataura H, Okabe Y, Maniwa Y 2010 J. Phys. Soc. Jpn. 79 023601Google Scholar
[35] Hagiwara M, Ikeda M, Kida T, Matsuda K, Tadera S, Kyakuno H, Yanagi K, Maniwa Y, Okunishi K 2014 J. Phys. Soc. Jpn. 83 113706Google Scholar
[36] Massote D V P, Mazzoni M S C 2014 J. Phys. Chem. C 118 24741Google Scholar
[37] Ji X L, Lee K T, Nazar L F 2009 Nat. Mater. 8 500Google Scholar
[38] Springborg M, Jones R O 1986 Phys. Rev. Lett. 57 1145Google Scholar
[39] Fujimori T, Morelos A, Zhu Z, Muramatsu H, Futamura1 R, Urita K, Terrones M, Hayashi T, Endo M, Hong S Y, ChoI Y C, Tomanek D, Kaneko Katsumi 2013 Nat. Commun. 4 2162Google Scholar
[40] Chancolon J, Archaimbault F, Bonnamy S, Traverse A, Olivi L, Vlaic G 2006 J. Non-Cryst. Solids 352 99Google Scholar
[41] Fujimori T, dos Santos R B, Hayashi T, Endo M, Kaneko K, Tománek D 2013 ACS Nano 7 5607Google Scholar
[42] Grigorian L, Williams K A, Fang S, Sumanasekera G U, Loper A L, Dickey E C, Pennycook S J, Eklund P C 1998 Phys. Rev. Lett. 80 5560Google Scholar
[43] Fan X, Dickey E C, Eklund P C, Williams K A, Grigorian L, Buczko R, Pantelides S T, Pennycook S J 2000 Phys. Rev. Lett. 84 4621Google Scholar
[44] Guan L H, Suenaga K, Shi Z J, Gu Z N, Iijima S 2007 Nano Lett. 7 1532Google Scholar
[45] Komsa H P, Senga R, Suenaga K, Krasheninnikov A V 2017 Nano Lett. 17 3694Google Scholar
Catalog
Metrics
- Abstract views: 6557
- PDF Downloads: 316
- Cited By: 0