Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Secondary electron emission characteristics of gold nanostructures

Wang Dan He Yong-Ning Ye Ming Cui Wan-Zhao

Citation:

Secondary electron emission characteristics of gold nanostructures

Wang Dan, He Yong-Ning, Ye Ming, Cui Wan-Zhao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Secondary electron emission (SEE), which is a frequent phenomenon in space high power microwave systems, is one of the basic inducement of multipactor in space microwave components. It is already verified that lowering SEE is an effective method to mitigate the undesirable effect. Metal black nanostructures have ever been reported to suppress SEE remarkably, however, the SEE characteristics of the gold nanostructures are rarely investigated. In this work, we use the thermal evaporation to fabricate the gold nanostructures under various evaporation gas pressures, and further analyze their SEE characteristics as well as energy distribution information. Experimental results reveal that the evaporation gas pressure determines the morphology of gold nanostructure, and the morphology dominates the SEE level of the gold nanostructure. To be specific, as the evaporation gas pressure rises, the porosity of the nanostructure increases and the SEE yield decreases. The energy distribution information indicates that the gold nanostructure just suppresses the true secondary electrons (TSEs) effectively. However, the effect of the nanostructure on the back scattered electrons (BSEs) is heavily dependent on the surface morphology. Specifically, the nanostructure fabricated at 70 Pa suppresses the BSEs weakly while the nanostructures fabricated at 40-60 Pa enhance the BSEs to some degree. To theoretically explain the experimental phenomena, we establish an equivalent model, which is made up of the periodical combination of a hemisphere and a composite groove, to imitate the fabricated gold nanostructure and simulate its SEE characteristics based on the SEE phenomenological probability model. Simulation results indicate that the hemisphere induces more TSEs and BSEs while the composite groove suppresses them, besides, the groove suppresses the TSEs much more remarkably than the BSEs. The SEE level of the nanostructure model is determined by the weighted average effect of both the hemisphere and the groove. The simulations qualitatively explain the experimental phenomena. This work in depth reveals the SEE mechanism for the gold nanostructures, and is of considerable significance for developing the low SEE surface on a nanometer scale in a space high power microwave-system.
      Corresponding author: He Yong-Ning, yongning@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1537211, 61501364).
    [1]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 3198

    [2]

    Semenov V E, Rasch J, Rakova E, Johansson J F 2014 IEEE Trans. Plasma Sci. 42 721

    [3]

    Wang D, He Y N, Li Y 2017 Chin. Space Sci. Technol. 37 1 (in Chinese)[王丹, 贺永宁, 李韵 2017 中国空间科学技术 37 1]

    [4]

    Vaughan J R M 1988 IEEE Trans. Electron Devices 35 1172

    [5]

    Hueso J, Vicente C, Gimeno B, Boria V E, Marini S, Taroncher M 2010 IEEE Trans. Electron Devices 57 3508

    [6]

    Nistor V, Gonzlez L A, Aguilera L, Montero I, Galn L, Wochner U, Raboso D 2014 Appl. Surf. Sci. 315 445

    [7]

    Yang J, Cui W Z, Li Y, Xie G B, Zhang N, Wang R, Hu T C, Zhang H T 2016 Appl. Surf. Sci. 382 88

    [8]

    Ruiz A, Romn E, Lozano P, Garca M, Galn L, Montero I, Raboso D 2007 Vacuum 81 1493

    [9]

    Luo J, Tian P, Pan C T, Roberson A W, Warner J H, Hill E W, Briggs G A D 2011 ACS Nano 5 1047

    [10]

    Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904

    [11]

    Ye M, He Y N, Hu S G, Yang J, Wang R, Hu T C, Peng W B, Cui W Z 2013 J. Appl. Phys. 114 104905

    [12]

    Ye M, He Y N, Wang R, Hu T C, Zhang N, Yang J, Cui W Z, Zhang Z B 2014 Acta Phys. Sin. 63 147901 (in Chinese)[叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵 2014 63 147901]

    [13]

    Valizadeh R, Malyshev O B, Wang S H, Zolotovskaya S A, Gillespie W A, Abdolvand A 2014 Appl. Phys. Lett. 105 231605

    [14]

    Watts C, Gilmore M 2011 IEEE Trans. Plasma Sci. 39 836

    [15]

    Bruining H 1954 Physics and Applications of Secondary Electron Emission (London:Pergamon Press) p142

    [16]

    Thomas S, Pattinson E B 1970 J. Phys. D 3 1469

    [17]

    He Y N, Peng W B, Cui W Z, Ye M, Zhao X L, Wang D, Hu T C, Wang R, Li Y 2016 AIP Adv. 6 025122

    [18]

    Wang D, He Y N, Ye M, Peng W B, Cui W Z 2017 J. Appl. Phys. 122 153302

    [19]

    Ye M, Wang D, Li Y, He Y N, Cui W Z, Daneshmand M 2017 J. Appl. Phys. 121 074902

    [20]

    Cui W Z, Yang J, Zhang N 2013 Space Electron Technol 10 75 (in Chinese)[崔万照, 杨晶, 张娜 2013 空间电子技术 10 75]

    [21]

    Zhang N, Cao M, Cui W Z, Zhang H B 2014 Chinese J. Vac. Sci. Technol. 34 554 (in Chinese)[张娜, 曹猛, 崔万照, 张海波 2014 真空科学与技术学报 34 554]

    [22]

    Seiler H 1983 J. Appl. Phys. 54 R1

    [23]

    Lara J D, Prez F, Alfonseca M, Galn L, Montero I, Romn E, Raboso D, Baquero G 2006 IEEE Trans. Plasma Sci. 34 476

  • [1]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 3198

    [2]

    Semenov V E, Rasch J, Rakova E, Johansson J F 2014 IEEE Trans. Plasma Sci. 42 721

    [3]

    Wang D, He Y N, Li Y 2017 Chin. Space Sci. Technol. 37 1 (in Chinese)[王丹, 贺永宁, 李韵 2017 中国空间科学技术 37 1]

    [4]

    Vaughan J R M 1988 IEEE Trans. Electron Devices 35 1172

    [5]

    Hueso J, Vicente C, Gimeno B, Boria V E, Marini S, Taroncher M 2010 IEEE Trans. Electron Devices 57 3508

    [6]

    Nistor V, Gonzlez L A, Aguilera L, Montero I, Galn L, Wochner U, Raboso D 2014 Appl. Surf. Sci. 315 445

    [7]

    Yang J, Cui W Z, Li Y, Xie G B, Zhang N, Wang R, Hu T C, Zhang H T 2016 Appl. Surf. Sci. 382 88

    [8]

    Ruiz A, Romn E, Lozano P, Garca M, Galn L, Montero I, Raboso D 2007 Vacuum 81 1493

    [9]

    Luo J, Tian P, Pan C T, Roberson A W, Warner J H, Hill E W, Briggs G A D 2011 ACS Nano 5 1047

    [10]

    Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904

    [11]

    Ye M, He Y N, Hu S G, Yang J, Wang R, Hu T C, Peng W B, Cui W Z 2013 J. Appl. Phys. 114 104905

    [12]

    Ye M, He Y N, Wang R, Hu T C, Zhang N, Yang J, Cui W Z, Zhang Z B 2014 Acta Phys. Sin. 63 147901 (in Chinese)[叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵 2014 63 147901]

    [13]

    Valizadeh R, Malyshev O B, Wang S H, Zolotovskaya S A, Gillespie W A, Abdolvand A 2014 Appl. Phys. Lett. 105 231605

    [14]

    Watts C, Gilmore M 2011 IEEE Trans. Plasma Sci. 39 836

    [15]

    Bruining H 1954 Physics and Applications of Secondary Electron Emission (London:Pergamon Press) p142

    [16]

    Thomas S, Pattinson E B 1970 J. Phys. D 3 1469

    [17]

    He Y N, Peng W B, Cui W Z, Ye M, Zhao X L, Wang D, Hu T C, Wang R, Li Y 2016 AIP Adv. 6 025122

    [18]

    Wang D, He Y N, Ye M, Peng W B, Cui W Z 2017 J. Appl. Phys. 122 153302

    [19]

    Ye M, Wang D, Li Y, He Y N, Cui W Z, Daneshmand M 2017 J. Appl. Phys. 121 074902

    [20]

    Cui W Z, Yang J, Zhang N 2013 Space Electron Technol 10 75 (in Chinese)[崔万照, 杨晶, 张娜 2013 空间电子技术 10 75]

    [21]

    Zhang N, Cao M, Cui W Z, Zhang H B 2014 Chinese J. Vac. Sci. Technol. 34 554 (in Chinese)[张娜, 曹猛, 崔万照, 张海波 2014 真空科学与技术学报 34 554]

    [22]

    Seiler H 1983 J. Appl. Phys. 54 R1

    [23]

    Lara J D, Prez F, Alfonseca M, Galn L, Montero I, Romn E, Raboso D, Baquero G 2006 IEEE Trans. Plasma Sci. 34 476

  • [1] Huo Long-Hua, Xie Guo-Feng. Mechanism of phonon scattering by under-coordinated atoms on surface. Acta Physica Sinica, 2019, 68(8): 086501. doi: 10.7498/aps.68.20190194
    [2] Lin Nan-Sheng, Han Lu-Xue, Jiang Miao, Li Ying-Jun. Dependence of peak width of energy distribution on profile of combined field. Acta Physica Sinica, 2018, 67(13): 133401. doi: 10.7498/aps.67.20172656
    [3] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [4] Chen Xiu-Guo, Yuan Kui, Du Wei-Chao, Chen Jun, Jiang Hao, Zhang Chuan-Wei, Liu Shi-Yuan. Large-scale nanostructure metrology using Mueller matrix imaging ellipsometry. Acta Physica Sinica, 2016, 65(7): 070703. doi: 10.7498/aps.65.070703
    [5] Hua Yu-Chao, Cao Bing-Yang. A model for phonon thermal conductivity of multi-constrained nanostructures. Acta Physica Sinica, 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
    [6] Wang Qiu-Ping, Feng Yu-Jun, Xu Zhuo, Cheng Peng-Fei, Feng Fei-Long. Electron emission from Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric cathode. Acta Physica Sinica, 2015, 64(24): 247701. doi: 10.7498/aps.64.247701
    [7] Gao Xiang, Chen Xiao-Bo, Li Jun, Li Jia-Ming. Optimum valence bond scheme for its applications to the prediction of nano-structures and the study of matter properties. Acta Physica Sinica, 2013, 62(9): 093601. doi: 10.7498/aps.62.093601
    [8] Yu Yang, Zhao Yong-Tao, Wang Yu-Yu, Wang Xing, Cheng Rui, Zhou Xian-Ming, Li Yong-Feng, Liu Shi-Dong, Lei Yu, Sun Yuan-Bo, Zeng Li-Xia. Secondary electron emission from carbon Foils by Ne2+ near Bohr velocity. Acta Physica Sinica, 2013, 62(15): 157901. doi: 10.7498/aps.62.157901
    [9] Han Yu-Yan, Cao Liang, Xu Fa-Qiang, Chen Tie-Xin, Zheng Zhi-Yuan, Wan Li, Liu Ling-Yun. Preparation and investigation of the formation mechanism of organic single crystal nanostructures of PTCDA. Acta Physica Sinica, 2012, 61(7): 078103. doi: 10.7498/aps.61.078103
    [10] Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui, Zhang Fan, Luo Jun. Synthesis and characterization of Sb2Te3 nanostructures. Acta Physica Sinica, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [11] Chen An-Min, Gao Xun, Jiang Yuan-Fei, Ding Da-Jun, Liu Hang, Jin Ming-Xing. Numerical simulation of femtosecond laser heating of metal films using electron thermal emission. Acta Physica Sinica, 2010, 59(10): 7198-7202. doi: 10.7498/aps.59.7198
    [12] Wang Jian-Guo, Xu Zhong-Feng, Zhao Yong-Tao, Wang Yu-Yu, Li De-Hui, Zhao Di, Xiao Guo-Qing. Slow highly charged ions induced electron emission from clean Si surfaces. Acta Physica Sinica, 2010, 59(11): 7803-7807. doi: 10.7498/aps.59.7803
    [13] Wu Xiang, Cai Wei, Qu Feng-Yu. Tailoring the morphology and wettability of ZnO one-dimensional nanostructures. Acta Physica Sinica, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
    [14] Zhang Lin-Li, Xu Zhuo, Feng Yu-Jun, Sheng Zhao-Xuan. Characteristics of electron emission from La-doped Pb(Zr,Sn,Ti)O3 antiferroelectric cathode under negative triggering pulse. Acta Physica Sinica, 2009, 58(6): 4249-4253. doi: 10.7498/aps.58.4249
    [15] Cheng Du-Qing, Guan Qing-Feng, Zhu Jian, Qiu Dong-Hua, Cheng Xiu-Wei, Wang Xue-Tao. Mechanism of surface nanocrystallization in pure nickel induced by high-current pulsed electron beam. Acta Physica Sinica, 2009, 58(10): 7300-7306. doi: 10.7498/aps.58.7300
    [16] Li Ai-Hua, Zhang Kai-Wang, Meng Li-Jun, Li Jun, Liu Wen-Liang, Zhong Jian-Xin. Novel silicon nanostructures based on graphene ribbons. Acta Physica Sinica, 2008, 57(7): 4356-4363. doi: 10.7498/aps.57.4356
    [17] Sheng Zhao-Xuan, Feng Yu-Jun, Huang Xuan, Xu Zhuo, Sun Xin-Li. Strong electron emission of antiferroelectric ceramic. Acta Physica Sinica, 2008, 57(7): 4590-4595. doi: 10.7498/aps.57.4590
    [18] Yang Hong-Guan, Shi Yi, Lü Jin, Pu Lin, Zhang Rong, Zheng You-Dou. Hole storage characteristics in Ge/Si hetero-nanocrystal-based memories. Acta Physica Sinica, 2004, 53(4): 1211-1216. doi: 10.7498/aps.53.1211
    [19] . Acta Physica Sinica, 2002, 51(2): 367-371. doi: 10.7498/aps.51.367
    [20] Tan Zhen-Yu, Xia Yue-Yuan. . Acta Physica Sinica, 2002, 51(7): 1506-1511. doi: 10.7498/aps.51.1506
Metrics
  • Abstract views:  7038
  • PDF Downloads:  192
  • Cited By: 0
Publishing process
  • Received Date:  11 January 2018
  • Accepted Date:  02 February 2018
  • Published Online:  20 April 2019

/

返回文章
返回
Baidu
map