搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

价键优选法及其在纳米结构预测与物性研究中的应用

高翔 陈晓波 黎军 李家明

引用本文:
Citation:

价键优选法及其在纳米结构预测与物性研究中的应用

高翔, 陈晓波, 黎军, 李家明

Optimum valence bond scheme for its applications to the prediction of nano-structures and the study of matter properties

Gao Xiang, Chen Xiao-Bo, Li Jun, Li Jia-Ming
PDF
导出引用
  • 本文论述价键优选法作为一种新颖的理论方法在材料结构预测与物性研究中的应用, 特别是在低维数纳米结构如团簇与纳米线研究中所展示的优势. 价键优选法以原子几何构型和电子云(主要是由费米能级附近的分子轨道组成, 即广义前线轨道)空间分布来合理决定纳米结构的稳定构型的选取. 本文以硅团簇为例说明价键优选法的特点, 以及锂、钠、铍、镁等金属团簇为例说明价键优选法在结构预测与材料 物性随尺寸演化规律研究中的应用, 以锂离子在MoS纳米线中的吸附为例说明价键优选法在储能材料离子传导研究中的应用, 最后总结价键优选法的进一步发展方向.
    The optimum valence bond scheme is a new theoretical method in generating the initial geometric configurations in molecular dynamics simulations of cluster systems. We will present the application of such a new method to the prediction of nano-structures and the study of matter properties, especially for the low-dimensional nano-structures, such as clusters and nano wires. The optimum valence bond scheme uses the atomic geometry of structures and the space distribution of the valence electrons (mainly the molecular orbitals near the Fermi levels, i.e., the generalized frontier orbitals) to determine the possible stable geometric configurations of nano-structures. Silicon clusters are used to demonstrate the features of the optimum valence bond scheme. Metallic clusters such as those of lithium, sodium, beryllium and magnesium are used as examples to illustrate the application of the scheme to the prediction of structures and the studies of the evolution of the material properties with the sizes of clusters. We will use the adsorption process of lithium ion and MoS nano wire to illustrate the application of the optimum valence bond scheme in the studies of the ionic conduction mechanism of the energy storage materials. We will finish the paper by summarizing the direction for further development of the optimum valence bond scheme.
    • 基金项目: 国家自然科学基金(批准号:11274035,11174301)、国家重点基础研究发展计划(973计划)(批准号:2010CB922900,2011CB921501,2012CB722700)、宁波市创新团队(批准号:2011B82005)、教育部科学技术研究重大项目基金(批准号:306020),国家高科技ICF项目和银河超级计算中心,北京应用物理与计算数学研究所资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274035, 11174301), the National Basic Research Program of China (Grant Nos. 2010CB922900, 2011CB921501, 2012CB722700), the Ningbo Key Innovation Team, China (Grant No. 2011B82005), the Foundation for Key Program of Ministry of Education, China (Grant No. 306020), the National High-Tech ICF Committee in China and the Yin-He Super-computer Center, Institute of Applied Physics and Mathematics, Beijing, China.
    [1]

    Car R, Parrinello M 1985 Phys. Rev. Lett. 55 2471

    [2]

    Ohno K, Esfarjani K, Kawazoe Y 1999 Computational Materials Science (Berlin: Springer)

    [3]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [4]

    Wales D J 2003 Energy Landscapes (Cambridge: Cambridge University Press)

    [5]

    Deaven D M, Ho K M 1995 Phys. Rev. Lett. 75 288

    [6]

    Kresse G, Hafner J 2000 Surface Science 459 287

    [7]

    Xiang Y, Sun D Y, Gong X G 2000 J. Phys. Chem. A 104 2746

    [8]

    Yuan Z, He C L, Wang X L, Liu H T, Li J M 2005 Acta Phys. Sin. 54 628 (in Chinese) [袁喆, 何春龙, 王晓路, 刘海涛, 李家明 2005 54 628]

    [9]

    Shen X Y, Xu Y G, He C L, Liu H T, Li J M 2005 Eur. Phys. J. D 34 109

    [10]

    He C L, Yuan Z, Shen X Y, Xu Y G, Li J M 2006 Acta Phys. Sin. 55 162 (in Chinese) [何春龙, 袁喆, 申旭阳, 许雅歌, 李家明 2006 55 162]

    [11]

    Fukui K 1985 Chemical reaction and electronic orbit, Translated by Li R S (Beijing: Science Press) (in Chinese) [福井谦一 1985 化学反应与电子轨道, 李荣森译 (北京: 科学出版社)]

    [12]

    Plieth W 2008 Electrochemistry for Materials Science (Holland: Elsevier Inc.)

    [13]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nature Materials 10 682

    [14]

    Kohn W 1999 Rev. Mod. Phys. 71 1253

    [15]

    Bloch F 1928 Z. Physik 52 555

    [16]

    Hellmann H 1935 Phys. Rev. 56 340

    [17]

    Su C R, Li J M 2002 Science in China A 45 906

    [18]

    Jahn, H A, Teller E 1937 Proc. Roy. Soc. A 161 220

    [19]

    Renner R 1934 Z. Physik 92 172

    [20]

    Herzberg G, Teller E 1933 Z. Physik Chem. Leipzig B 21 410

    [21]

    Frisch M J, Trucks G W, Schlegel H B 2003 Gaussian03 Revision B05 (Pittsburgh: Gaussian Inc.)

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [24]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [25]

    Lee C, Yang W T, Parr R G 1988 Phys. Rev. B 37 785

    [26]

    Lide D R 1998 CRC Handbook of Chemistry and Physics (79th Edition) (New York: Chemical Rubber Publishing Company)

    [27]

    Kittel C 2005 Introduction to solid state physics (8th Edition) (New York: John Wiley and Sons Ltd.)

    [28]

    Li Y F, Zhou Z, Zhang S B, Chen Z F 2008 J. Am. Chem. Soc. 130 16739

    [29]

    Chen X B, He J H, Srivastava D, Li J 2012 Appl. Phys. Lett. 100 263901

    [30]

    Bian X J, Zhu J, Liao L, Scanlon M D, Ge P Y, Ji C, Girault H H, Liu B H 2012 Electrochemistry Communications 22 128

    [31]

    Fang X P, Hua C X, Guo X W, Hu Y S, Wang Z X, Gao X P, Wu F, Wang J Z, Chen L Q 2012 Electrochimica Acta 81 155

    [32]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnology 6 147

    [33]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [34]

    Wannier G H 1937 Phys. Rev. 52 191

    [35]

    Smirnov V P, Evarestov R A, Usvyat D E 2002 International Journal of Quantum Chemistry 88 642

    [36]

    Evarestov R A, Smirnov V P, Usvyat D E 2005 Theor. Chem. Acc. 114 19

    [37]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847

    [38]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109

    [39]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

  • [1]

    Car R, Parrinello M 1985 Phys. Rev. Lett. 55 2471

    [2]

    Ohno K, Esfarjani K, Kawazoe Y 1999 Computational Materials Science (Berlin: Springer)

    [3]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [4]

    Wales D J 2003 Energy Landscapes (Cambridge: Cambridge University Press)

    [5]

    Deaven D M, Ho K M 1995 Phys. Rev. Lett. 75 288

    [6]

    Kresse G, Hafner J 2000 Surface Science 459 287

    [7]

    Xiang Y, Sun D Y, Gong X G 2000 J. Phys. Chem. A 104 2746

    [8]

    Yuan Z, He C L, Wang X L, Liu H T, Li J M 2005 Acta Phys. Sin. 54 628 (in Chinese) [袁喆, 何春龙, 王晓路, 刘海涛, 李家明 2005 54 628]

    [9]

    Shen X Y, Xu Y G, He C L, Liu H T, Li J M 2005 Eur. Phys. J. D 34 109

    [10]

    He C L, Yuan Z, Shen X Y, Xu Y G, Li J M 2006 Acta Phys. Sin. 55 162 (in Chinese) [何春龙, 袁喆, 申旭阳, 许雅歌, 李家明 2006 55 162]

    [11]

    Fukui K 1985 Chemical reaction and electronic orbit, Translated by Li R S (Beijing: Science Press) (in Chinese) [福井谦一 1985 化学反应与电子轨道, 李荣森译 (北京: 科学出版社)]

    [12]

    Plieth W 2008 Electrochemistry for Materials Science (Holland: Elsevier Inc.)

    [13]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nature Materials 10 682

    [14]

    Kohn W 1999 Rev. Mod. Phys. 71 1253

    [15]

    Bloch F 1928 Z. Physik 52 555

    [16]

    Hellmann H 1935 Phys. Rev. 56 340

    [17]

    Su C R, Li J M 2002 Science in China A 45 906

    [18]

    Jahn, H A, Teller E 1937 Proc. Roy. Soc. A 161 220

    [19]

    Renner R 1934 Z. Physik 92 172

    [20]

    Herzberg G, Teller E 1933 Z. Physik Chem. Leipzig B 21 410

    [21]

    Frisch M J, Trucks G W, Schlegel H B 2003 Gaussian03 Revision B05 (Pittsburgh: Gaussian Inc.)

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [24]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [25]

    Lee C, Yang W T, Parr R G 1988 Phys. Rev. B 37 785

    [26]

    Lide D R 1998 CRC Handbook of Chemistry and Physics (79th Edition) (New York: Chemical Rubber Publishing Company)

    [27]

    Kittel C 2005 Introduction to solid state physics (8th Edition) (New York: John Wiley and Sons Ltd.)

    [28]

    Li Y F, Zhou Z, Zhang S B, Chen Z F 2008 J. Am. Chem. Soc. 130 16739

    [29]

    Chen X B, He J H, Srivastava D, Li J 2012 Appl. Phys. Lett. 100 263901

    [30]

    Bian X J, Zhu J, Liao L, Scanlon M D, Ge P Y, Ji C, Girault H H, Liu B H 2012 Electrochemistry Communications 22 128

    [31]

    Fang X P, Hua C X, Guo X W, Hu Y S, Wang Z X, Gao X P, Wu F, Wang J Z, Chen L Q 2012 Electrochimica Acta 81 155

    [32]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnology 6 147

    [33]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [34]

    Wannier G H 1937 Phys. Rev. 52 191

    [35]

    Smirnov V P, Evarestov R A, Usvyat D E 2002 International Journal of Quantum Chemistry 88 642

    [36]

    Evarestov R A, Smirnov V P, Usvyat D E 2005 Theor. Chem. Acc. 114 19

    [37]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847

    [38]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109

    [39]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

  • [1] 张春艳. H离子团簇高次谐波平台展宽与团簇膨胀.  , 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] 郑治秀, 张林. Fe基体中包含Cu团簇的Fe-Cu二元体系在升温过程中结构变化的原子尺度计算.  , 2017, 66(8): 086301. doi: 10.7498/aps.66.086301
    [3] 吴丽君, 随强涛, 张多, 张林, 祁阳. SimGen(m+n=9)团簇结构和电子性质的计算研究.  , 2015, 64(4): 042102. doi: 10.7498/aps.64.042102
    [4] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究.  , 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [5] 朱晓蕊, 王卫东, 秦广雍, 焦浈. 单锥形纳米孔的制备和离子传导特性研究.  , 2013, 62(7): 077802. doi: 10.7498/aps.62.077802
    [6] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究.  , 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [7] 樊沁娜, 李蔚, 张林. 熔融Cu57团簇在急冷过程中弛豫和局域结构转变的分子动力学研究.  , 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [8] 鄂箫亮, 段海明. 利用Gupta势结合遗传算法研究ConCu55-n(n=0—55)混合团簇的结构演化及基态能量.  , 2010, 59(8): 5672-5680. doi: 10.7498/aps.59.5672
    [9] 赵骞, 张林, 祁阳, 张宗宁. 低温下Cu13团簇负载于Cu(001)表面上结构变化的分子动力学研究.  , 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [10] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究.  , 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [11] 顾娟, 王山鹰, 苟秉聪. Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究.  , 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [12] 张林, 徐送宁, 李蔚, 孙海霞, 张彩碚. 小尺寸铜团簇冷却与并合过程中结构变化的原子尺度研究.  , 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [13] 高皓, 廖龙忠, 张朝晖. 离子注入的铝在Si(100)表面的偏析及其引起的纳米团簇和合金晶粒形成现象的实验研究.  , 2009, 58(1): 427-431. doi: 10.7498/aps.58.427
    [14] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响.  , 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [15] 常德远, 郑 凯, 卫 延, 李 彬, 傅永军, 魏 淮, 简水生. 铋镓共掺的高浓度掺铒石英基光纤中铒离子团簇率的实验研究.  , 2008, 57(1): 556-560. doi: 10.7498/aps.57.556
    [16] 何春龙, 袁 喆, 申旭阳, 许雅歌, 李家明. 价键优选法:二、三周期小团簇的理论研究.  , 2006, 55(1): 162-170. doi: 10.7498/aps.55.162
    [17] 乐仁昌, 林刚勇. 理想条件下氦氡团簇离子垂直移动速度的理论计算.  , 2005, 54(9): 4113-4116. doi: 10.7498/aps.54.4113
    [18] 袁 喆, 何春龙, 王晓路, 刘海涛, 李家明. 团簇的第一原理分子动力学计算研究:价键优选法.  , 2005, 54(2): 628-635. doi: 10.7498/aps.54.628
    [19] 朱频频, 刘建胜, 徐至展. Ar原子团簇与飞秒强激光相互作用产生的高能离子计算.  , 2004, 53(3): 803-807. doi: 10.7498/aps.53.803
    [20] 杨朝文, V.A.Khodyrev, V.S.Kulikauskas. H+2,H+3团簇离子在沟道条件下的背散射 质子产额测量.  , 2003, 52(8): 1895-1900. doi: 10.7498/aps.52.1895
计量
  • 文章访问数:  6316
  • PDF下载量:  435
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-03
  • 修回日期:  2013-01-08
  • 刊出日期:  2013-05-05

/

返回文章
返回
Baidu
map