-
在分子束外延(MBE)系统中, 利用物理气相沉积(PVD)的方法在阳极氧化铝(AAO)模板上制备了有机 染料分子苝四甲酸二酐(PTCDA)的不同纳米结构; 并使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)以及选区电子衍射(SAED)技术进行了系统的研究. 结果发现, 当衬底温度(Ts)为330 ℃时得到的是纳米丝、针、带以及棒;Ts为280 ℃, 230 ℃, 180 ℃时得到的主要是纳米棒, 并且纳米棒的长度随Ts的降低而变短; Ts为50 ℃时只能得到连续的PTCDA薄膜. HRTEM以及SAED结果证实了纳米针与棒为单晶. 依据SEM结果, 提出纳米结构的生成主要受Ts以及衬底表面曲率的影响.Different types of nanostructures of an organic dye compound, perylene-3,4,9,10-tetracarboxylic-dianhydride (PTCDA), are prepared on anodic alumina oxide (AAO) at different values of substrate temperature (Ts) by a facile physical vapor deposition (PVD) method in a molecular beam epitaxy (MBE) system. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) techniques are applied to the systematical characterization of the nanostructures. It is found that the PTCDA nanofibers, nanoneedles, nanobelts, and nanorods are produced at 330 ℃Ts; Only nanorods are formed at 280 ℃, 230 ℃, and 180 ℃, and their lengths become short asTs decreases; the continuous films are obtained on 50 ℃ AAOs substrates. HRTEM and SAED results show that the nanoneedle and nanorods are of single crystal. According to SEM results, the formation of PTCDA nanostructures should be mainly affected by surface curvature andTs.
-
Keywords:
- PTCDA /
- organic single crystal /
- nanostructures /
- physical vapor deposition
[1] Zhao Y S, Fu H B, Peng A D, Ma Y, Xiao D B, Yao J N 2008 Adv. Mater. 20 2859
[2] Zang L, Che Y, Moore J S 2008 Acc. Chem. Res. 41 1596
[3] Zhao Y S, Fu H B, Hu F Q, Peng A D, Yang W S, Yao J N 2008 Adv. Mater. 20 79
[4] Peng A D, Xiao D B, Ma Y, Yang W S, Yao J N 2005 Adv. Mater. 17 70
[5] Lim S J, An B K, Jung S D, Chung M A, Park S Y 2004 Angew. Chem. Int. Ed. 43 6346
[6] Wang Y X, Zhang Q F, Sun H, Chang Y L,Wu J L 2008 Acta Phys. Sin. 57 1141 (in Chinese) [王艳新, 张琦峰, 孙辉, 常艳玲, 吴锦雷 2008 textbf 57 1141]
[7] Ki W, Li J 2008 J. Am. Chem. Soc. 130 8114
[8] Briseno A L, Mannsfeld S C B, Lu X M, Xiong Y J, Jenekhe S A, Bao Z N, Xia Y N 2007 Nano Lett. 7 668
[9] Zhang W, Li M K, Wei Q, Cao L, Yang Z, Qiao S S 2008 Acta Phys. Sin. 57 5887 (in Chinese) [张威, 李梦轲, 魏强, 曹璐, 杨志, 乔双双 2008 textbf 57 5887]
[10] Naddo T, Che Y K, ZhangW, Balakrishnan K, Yang X M, Yen M, Zhao J C, Moore J S , Zang L 2007 J. Am. Chem. Soc. 129 6978
[11] Che Y K, Yang X M, Loser S P, Zang L 2008 Nano Lett. 8 2219
[12] Zhao Y S, Xu J J, Peng A D, Fu H B, Ma Y, Jiang L, Yao J N 2008 Angew. Chem. Int. Ed. 47 7301
[13] Takazawa K, Kitahama Y, Kimura Y, Kido G 2005 Nano Lett. 5 1293
[14] Johansson J, Karlsson L S, Dick K A, Bolinsson J, Wacaser B A, Deppert K, Samuelson L 2009 Cryst. Growth Des. 9 767
[15] Wang Z Q, Liu X D, Gong J F, Huang H B, Gu S L, Yang S G 2008 Cryst. Growth Des. 8 3911
[16] Qin Y, Yang R S,Wang Hong L 2008 J. Phys. Chem. C 112 18734
[17] Chan C K, Peng H L, Liu G, McILWRATH K, Zhang X F, Huggins R A, Cui Y 2008 Nat. Nanotechnol. 3 31
[18] Li Z M, Xu F Q, Sun X Y, Zhang W H 2008 Cryst. Growth Des. 8 805
[19] Wan Q, Dattoli E N, Fung W Y, Guo W, Chen Y B, Pan X Q, Lu W 2006 Nano Lett. 6 2909
[20] Law M, Greene L E, Johnson J C, Saykally R, Yang P D 2005 Nat. Mater. 4 455
[21] Kim Y, Joyce H J, Gao Q, Tan H H, Jagadish C, Paladugu M, Zou J, Suvorova A A 2006 Nano Lett. 6 599
[22] Chung J W, An B K, Kim J W, Kim J J, Park S Y 2008 Chem. Commun. 2998
[23] Ryu J k, Park C B 2008 Adv. Mater. 20 3754
[24] Xiao K, Rondinone A J, Puretzky A A, Ivanov I N, Retterer S T, Geohegan D B 2009 Chem. Mater. 21 4275
[25] Zhao Y S, Wu J S, Huang J X 2009 J. Am. Chem. Soc. 131 3158
[26] Alonso M I, Garriga M, Karl N, Oss′o J O, Schreiber F 2002 Org. Electron 3 23
-
[1] Zhao Y S, Fu H B, Peng A D, Ma Y, Xiao D B, Yao J N 2008 Adv. Mater. 20 2859
[2] Zang L, Che Y, Moore J S 2008 Acc. Chem. Res. 41 1596
[3] Zhao Y S, Fu H B, Hu F Q, Peng A D, Yang W S, Yao J N 2008 Adv. Mater. 20 79
[4] Peng A D, Xiao D B, Ma Y, Yang W S, Yao J N 2005 Adv. Mater. 17 70
[5] Lim S J, An B K, Jung S D, Chung M A, Park S Y 2004 Angew. Chem. Int. Ed. 43 6346
[6] Wang Y X, Zhang Q F, Sun H, Chang Y L,Wu J L 2008 Acta Phys. Sin. 57 1141 (in Chinese) [王艳新, 张琦峰, 孙辉, 常艳玲, 吴锦雷 2008 textbf 57 1141]
[7] Ki W, Li J 2008 J. Am. Chem. Soc. 130 8114
[8] Briseno A L, Mannsfeld S C B, Lu X M, Xiong Y J, Jenekhe S A, Bao Z N, Xia Y N 2007 Nano Lett. 7 668
[9] Zhang W, Li M K, Wei Q, Cao L, Yang Z, Qiao S S 2008 Acta Phys. Sin. 57 5887 (in Chinese) [张威, 李梦轲, 魏强, 曹璐, 杨志, 乔双双 2008 textbf 57 5887]
[10] Naddo T, Che Y K, ZhangW, Balakrishnan K, Yang X M, Yen M, Zhao J C, Moore J S , Zang L 2007 J. Am. Chem. Soc. 129 6978
[11] Che Y K, Yang X M, Loser S P, Zang L 2008 Nano Lett. 8 2219
[12] Zhao Y S, Xu J J, Peng A D, Fu H B, Ma Y, Jiang L, Yao J N 2008 Angew. Chem. Int. Ed. 47 7301
[13] Takazawa K, Kitahama Y, Kimura Y, Kido G 2005 Nano Lett. 5 1293
[14] Johansson J, Karlsson L S, Dick K A, Bolinsson J, Wacaser B A, Deppert K, Samuelson L 2009 Cryst. Growth Des. 9 767
[15] Wang Z Q, Liu X D, Gong J F, Huang H B, Gu S L, Yang S G 2008 Cryst. Growth Des. 8 3911
[16] Qin Y, Yang R S,Wang Hong L 2008 J. Phys. Chem. C 112 18734
[17] Chan C K, Peng H L, Liu G, McILWRATH K, Zhang X F, Huggins R A, Cui Y 2008 Nat. Nanotechnol. 3 31
[18] Li Z M, Xu F Q, Sun X Y, Zhang W H 2008 Cryst. Growth Des. 8 805
[19] Wan Q, Dattoli E N, Fung W Y, Guo W, Chen Y B, Pan X Q, Lu W 2006 Nano Lett. 6 2909
[20] Law M, Greene L E, Johnson J C, Saykally R, Yang P D 2005 Nat. Mater. 4 455
[21] Kim Y, Joyce H J, Gao Q, Tan H H, Jagadish C, Paladugu M, Zou J, Suvorova A A 2006 Nano Lett. 6 599
[22] Chung J W, An B K, Kim J W, Kim J J, Park S Y 2008 Chem. Commun. 2998
[23] Ryu J k, Park C B 2008 Adv. Mater. 20 3754
[24] Xiao K, Rondinone A J, Puretzky A A, Ivanov I N, Retterer S T, Geohegan D B 2009 Chem. Mater. 21 4275
[25] Zhao Y S, Wu J S, Huang J X 2009 J. Am. Chem. Soc. 131 3158
[26] Alonso M I, Garriga M, Karl N, Oss′o J O, Schreiber F 2002 Org. Electron 3 23
计量
- 文章访问数: 7913
- PDF下载量: 586
- 被引次数: 0