Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-branch erbium fiber-based femtosecond optical frequency comb for measurement of cavity ring-down spectroscopy

Rao Bing-Jie Zhang Pan Li Ming-Kun Yang Xi-Guang Yan Lu-Lu Chen Xin Zhang Shou-Gang Zhang Yan-Yan Jiang Hai-Feng

Citation:

Multi-branch erbium fiber-based femtosecond optical frequency comb for measurement of cavity ring-down spectroscopy

Rao Bing-Jie, Zhang Pan, Li Ming-Kun, Yang Xi-Guang, Yan Lu-Lu, Chen Xin, Zhang Shou-Gang, Zhang Yan-Yan, Jiang Hai-Feng
PDF
HTML
Get Citation
  • In this paper, we demonstrate an optical frequency comb (OFC) based on an erbium-doped-fiber femtosecond laser, for the measurement of cavity ring-down spectroscopy (CRDS) with wavelengths of 1064, 1083, 1240, 1380, 1500, 1600, 1750 and 2100 nm. We adopt a multi-branch structure to produce high power at the specific wavelengths to meet the requirement for application in the spectral measurement. The OFC is developed by using a mode-locked fiber ring laser based on the nonlinear amplifying loop mirror mechanism. The laser is self-starting by introducing a nonreciprocal phase bias in the cavity and insensitive to the environmental perturbation. Using the chirped pulse amplification and highly nonlinear fibers, the broad spectra at the specific wavelengths are obtained. By optimizing the parameters of the pulses, the power of per mode at each target wavelength is greater than 300 nW.The frep is obtained by detecting the output of the femtosecond laser directly, while the fceo is detected by f-2f interference. The signal-to-noise ratio of the fceo is about 35 dB with a 300-kHz resolution bandwidth. By controlling the intra-cavity electro-optic modulator and piezoactuator , the frep is stabilized with high bandwidth and large range (about megahertz bandwidth and 3 kHz range). The fceo is stabilized by using feedback to the pump current of the femtosecond laser dynamically. The in-loop frequency instability degree of the fceo, evaluated by the Allan deviation, is approximately 4.95 × 10–18/τ1/2 at 1 s and integrates down to 10–20 level after 2000 s, while that of the frep is well below 5.85 × 10–13/τ. The all polarization-maintaining erbium fiber-based femtosecond optical frequency comb with multi-application branches we demonstrate in this paper is efficient and reliable for many other applications including optical frequency metrology and optical atomic clocks.
      Corresponding author: Zhang Yan-Yan, zhangyanyan@ntsc.ac.cn ; Jiang Hai-Feng, hjiang1@ustc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFA0309801), the Strategic Leader Category B of Chinese Academy of Sciences (Grant No. XDB35030101), and the Natural Science Basic Research Program of Shannxi Province, China (Grant No. 202-JQ-434).
    [1]

    Hartl I, Schibli T R, Marcinkevicius A, Yost D C, Hudson D D, Fermann M E, Ye J 2007 Opt. Lett. 32 2870Google Scholar

    [2]

    Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jorgensen C G 2004 Opt. Lett. 29 250Google Scholar

    [3]

    Phillips C R, Langrock C, Pelc J S, Fejer M M, Jiang J, Fermann M E, Hartl I 2011 Opt. Lett. 36 3912Google Scholar

    [4]

    Eckstein J N, Ferguson A I, Hansch T W 1978 Phys. Rev. Lett. 40 847Google Scholar

    [5]

    Telle H R, Steinmeyer G, Dunlop A E, Stenger J, Sutter D H, Keller U 1999 Appl. Phys. B 69 327Google Scholar

    [6]

    Morgner U, Kärtner F X, Cho S H, Chen Y, Haus H A, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T 1999 Opt. Lett. 24 411Google Scholar

    [7]

    Ell R, Morgner U, Kãârtner F X, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T, Lederer M J, Boiko A 2001 Opt. Lett. 26 373Google Scholar

    [8]

    Tauser F, Leitenstorfer A, Zinth W 2003 Opt. Express 11 594Google Scholar

    [9]

    Holzwarth R, Zimmermann M, Udem T, Hänsch T W, Russbldt P, Gbel K, Poprawe R, Knight J C, Wadsworth W J, Russell P 2001 Opt. Lett. 26 1376Google Scholar

    [10]

    Yan M, Li W X, Yang K W, Zhou H, Shen X L, Zhou Q, Ru Q T, Bai D B, Zeng H P 2012 Opt. Lett. 37 1511Google Scholar

    [11]

    Stumpf M C, Pekarek S, Oehler A E H, Südmeyer T, Dudley J M, Keller U 2010 Appl. Phys. B 99 401Google Scholar

    [12]

    Washburn B, Fox R, Newbury N, Nicholson J, Feder K, Westbrook P, Jørgensen C 2004 Opt. Express 12 4999Google Scholar

    [13]

    Udem T, Reichert J, Holzwarth R, Hänsch T W 1999 Opt. Lett. 24 881Google Scholar

    [14]

    Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25Google Scholar

    [15]

    D J Jones, S A Diddams, J K Ranka, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [16]

    Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hänsch T W, Pasquini L, Manescau A, D'Odorico S, Murphy M T, Kentischer T, Schmidt W, Udem T 2008 Science 321 1335Google Scholar

    [17]

    Kim S 2009 Nat. Photonics. 3 313Google Scholar

    [18]

    Niering M, Holzwarth R, Reichert J, Pokasov P, Udem T, Weitz M, Hansch T W, Lemonde P, Santarelli G, Abgrall M, Laurent P, Salomon C, Clairon A 2000 Phys. Rev. Lett. 84 5496Google Scholar

    [19]

    O’Keefe A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar

    [20]

    Paul J B, Lapson L, Anderson J G 2001 Appl. Opt 40 4904Google Scholar

    [21]

    Kassi S, Campargue A 2012 J. Chem. Phys. 137 234201Google Scholar

    [22]

    Tan Y, Wang J, Cheng C F, Zhao X Q, Liu A W, Hu S M 2014 Mol. Spectrosc. 300 60Google Scholar

    [23]

    饶冰洁, 张颜艳, 闫露露, 武跃龙, 张攀, 樊松涛, 郭文阁, 张晓斐, 张首刚, 姜海峰 2019 光子学报 48 0114003Google Scholar

    Rao B J, Zhang Y Y, Yan L L, Wu Y L, Zhang P, Fan S T, Guo W G, Zhang X F, Zhang S G, Jiang H F 2019 Acta Photon. Sin. 48 0114003Google Scholar

    [24]

    Pan H, Cheng C F, Sun Y R, Gao B, Liu A W, Hu S M 2011 Rev. Sci. Instrum. 82 103110Google Scholar

    [25]

    Gatti D, Sala T, Gotti R, Cocola L, Poletto L, Prevedelli M, Laporta P, Marangoni M 2015 J.Chem. Phys. 142 074201Google Scholar

    [26]

    Martinez R Z, Metsala M, Vaittinen O, Lantta T, Halonen L 2006 Opt. Soc. Am. B 23 727Google Scholar

    [27]

    Hodges J T, Layer H P, Miller W W, Scace G E 2004 Rev. Sci. Instrum. 75 849Google Scholar

    [28]

    Cygan A, Lisak D, Maslowski P, Bielska K, Wojtewicz S, Domyslawska J, Trawinski R S, Ciurylo R, Abe H, Hodges J T 2011 Rev. Sci. Instrum. 82 063107Google Scholar

    [29]

    Wang J, Sun Y R, Tao L G, Liu A W, Hua T P, Meng F, Hu S M 2017 Rev. Sci. Instrum 88 043108Google Scholar

    [30]

    康鹏, 孙羽, 王进, 刘安雯, 胡水明 2018 67 104206Google Scholar

    Kang P, Sun Y, Wang J, Liu A W, Hu S M 2018 Acta Phys. Sin. 67 104206Google Scholar

    [31]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [32]

    谈艳, 王进, 陶雷刚, 孙羽, 刘安雯, 胡水明 2018 中国激光 45 0911002

    Tan Y, Wang J, Tao L G, Sun Y, Liu A W, Hu S M 2018 Chin. J. Lasers 45 0911002 (in Chinese)

    [33]

    Fan S T, Zhang Y Y, Yan L L, Guo W G, Zhang S G, Jiang H F 2019 Chin. Phys. B 28 064204Google Scholar

    [34]

    Ning K, Hou L, Fan S T, Yan L L, Zhang Y Y, Rao B J, Zhang X F, Zhang S G, Jiang H F 2020 Chin. Phys. Lett. 37 064202Google Scholar

    [35]

    张颜艳, 闫露露, 姜海峰, 张首刚 2017 时间频率学报 40 130Google Scholar

    Zhang Y Y, Yan L L, Jiang H F, Zhang S G 2017 J. Time Freq. 40 130Google Scholar

  • 图 1  多支路掺铒光纤飞秒光梳结构示意图, CO为准直器; λ/2, λ/8为1/2和1/8波片; FR为法拉第旋光器; PBS为偏振分光棱镜; EOM为电光晶体调制器; PZT为压电陶瓷; TWDM为反射式波分复用器; M为反射镜; HNLF为高非线性光纤; Coupler为光纤耦合器; PD为光电探测器; WDM为带隔离器的波分复用器; SYN为频率综合器; LF为环路滤波器; HVA为高压放大器

    Figure 1.  Multi-branch Er:fiber based femtosecond optical comb system. CO, collimator; λ/2, 1/2 waveplate; λ/8, 1/8 waveplate; FR, faraday rotator; PBS, polarization beam splitter; EOM, electronic optical modulator; PZT, piezoelectric ceramic transducer; M, mirror; HNLF, highly nonlinear fiber; PD, photodetector; WDM, wavelength division multiplexer; SYN, synthesizer; LF, loop filter; HVA, high voltage amplifier.

    图 2  飞秒激光源输出特性 (a) 输出光谱; (b) 强度自相关曲线

    Figure 2.  Output parameter of femtosecond laser: (a) Measured spectrum; (b) autocorrelation curve of output pulse.

    图 3  载波包络相移频率和重复频率的探测和控制 (a) 倍频程光谱; (b) fceo频谱; (c)相位锁定后fceo环内频谱; (d) 环内频率控制稳定度

    Figure 3.  Detection and control of fceo and frep: (a) Measured octave-spanning spectrum; (b) RF spectrum of fceo; (c) in-loop RF spectrum of phase locked fceo; (d) in-loop frequency instability.

    图 4  各目标波长附近的光谱展宽分布 (a) 1064 nm; (b) 1083 nm; (c) 1240 nm; (d) 1380 nm; (e) 1500 nm; (f) 1600 nm; (g) 1750 nm; (h) 2100 nm

    Figure 4.  Observed supercontinuum spectrum near each target wavelength: (a) 1064 nm; (b) 1083 nm; (c) 1240 nm; (d) 1380 nm; (e) 1500 nm; (f) 1600 nm; (g) 1750 nm; (h) 2100 nm.

    Baidu
  • [1]

    Hartl I, Schibli T R, Marcinkevicius A, Yost D C, Hudson D D, Fermann M E, Ye J 2007 Opt. Lett. 32 2870Google Scholar

    [2]

    Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jorgensen C G 2004 Opt. Lett. 29 250Google Scholar

    [3]

    Phillips C R, Langrock C, Pelc J S, Fejer M M, Jiang J, Fermann M E, Hartl I 2011 Opt. Lett. 36 3912Google Scholar

    [4]

    Eckstein J N, Ferguson A I, Hansch T W 1978 Phys. Rev. Lett. 40 847Google Scholar

    [5]

    Telle H R, Steinmeyer G, Dunlop A E, Stenger J, Sutter D H, Keller U 1999 Appl. Phys. B 69 327Google Scholar

    [6]

    Morgner U, Kärtner F X, Cho S H, Chen Y, Haus H A, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T 1999 Opt. Lett. 24 411Google Scholar

    [7]

    Ell R, Morgner U, Kãârtner F X, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T, Lederer M J, Boiko A 2001 Opt. Lett. 26 373Google Scholar

    [8]

    Tauser F, Leitenstorfer A, Zinth W 2003 Opt. Express 11 594Google Scholar

    [9]

    Holzwarth R, Zimmermann M, Udem T, Hänsch T W, Russbldt P, Gbel K, Poprawe R, Knight J C, Wadsworth W J, Russell P 2001 Opt. Lett. 26 1376Google Scholar

    [10]

    Yan M, Li W X, Yang K W, Zhou H, Shen X L, Zhou Q, Ru Q T, Bai D B, Zeng H P 2012 Opt. Lett. 37 1511Google Scholar

    [11]

    Stumpf M C, Pekarek S, Oehler A E H, Südmeyer T, Dudley J M, Keller U 2010 Appl. Phys. B 99 401Google Scholar

    [12]

    Washburn B, Fox R, Newbury N, Nicholson J, Feder K, Westbrook P, Jørgensen C 2004 Opt. Express 12 4999Google Scholar

    [13]

    Udem T, Reichert J, Holzwarth R, Hänsch T W 1999 Opt. Lett. 24 881Google Scholar

    [14]

    Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25Google Scholar

    [15]

    D J Jones, S A Diddams, J K Ranka, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [16]

    Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hänsch T W, Pasquini L, Manescau A, D'Odorico S, Murphy M T, Kentischer T, Schmidt W, Udem T 2008 Science 321 1335Google Scholar

    [17]

    Kim S 2009 Nat. Photonics. 3 313Google Scholar

    [18]

    Niering M, Holzwarth R, Reichert J, Pokasov P, Udem T, Weitz M, Hansch T W, Lemonde P, Santarelli G, Abgrall M, Laurent P, Salomon C, Clairon A 2000 Phys. Rev. Lett. 84 5496Google Scholar

    [19]

    O’Keefe A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar

    [20]

    Paul J B, Lapson L, Anderson J G 2001 Appl. Opt 40 4904Google Scholar

    [21]

    Kassi S, Campargue A 2012 J. Chem. Phys. 137 234201Google Scholar

    [22]

    Tan Y, Wang J, Cheng C F, Zhao X Q, Liu A W, Hu S M 2014 Mol. Spectrosc. 300 60Google Scholar

    [23]

    饶冰洁, 张颜艳, 闫露露, 武跃龙, 张攀, 樊松涛, 郭文阁, 张晓斐, 张首刚, 姜海峰 2019 光子学报 48 0114003Google Scholar

    Rao B J, Zhang Y Y, Yan L L, Wu Y L, Zhang P, Fan S T, Guo W G, Zhang X F, Zhang S G, Jiang H F 2019 Acta Photon. Sin. 48 0114003Google Scholar

    [24]

    Pan H, Cheng C F, Sun Y R, Gao B, Liu A W, Hu S M 2011 Rev. Sci. Instrum. 82 103110Google Scholar

    [25]

    Gatti D, Sala T, Gotti R, Cocola L, Poletto L, Prevedelli M, Laporta P, Marangoni M 2015 J.Chem. Phys. 142 074201Google Scholar

    [26]

    Martinez R Z, Metsala M, Vaittinen O, Lantta T, Halonen L 2006 Opt. Soc. Am. B 23 727Google Scholar

    [27]

    Hodges J T, Layer H P, Miller W W, Scace G E 2004 Rev. Sci. Instrum. 75 849Google Scholar

    [28]

    Cygan A, Lisak D, Maslowski P, Bielska K, Wojtewicz S, Domyslawska J, Trawinski R S, Ciurylo R, Abe H, Hodges J T 2011 Rev. Sci. Instrum. 82 063107Google Scholar

    [29]

    Wang J, Sun Y R, Tao L G, Liu A W, Hua T P, Meng F, Hu S M 2017 Rev. Sci. Instrum 88 043108Google Scholar

    [30]

    康鹏, 孙羽, 王进, 刘安雯, 胡水明 2018 67 104206Google Scholar

    Kang P, Sun Y, Wang J, Liu A W, Hu S M 2018 Acta Phys. Sin. 67 104206Google Scholar

    [31]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [32]

    谈艳, 王进, 陶雷刚, 孙羽, 刘安雯, 胡水明 2018 中国激光 45 0911002

    Tan Y, Wang J, Tao L G, Sun Y, Liu A W, Hu S M 2018 Chin. J. Lasers 45 0911002 (in Chinese)

    [33]

    Fan S T, Zhang Y Y, Yan L L, Guo W G, Zhang S G, Jiang H F 2019 Chin. Phys. B 28 064204Google Scholar

    [34]

    Ning K, Hou L, Fan S T, Yan L L, Zhang Y Y, Rao B J, Zhang X F, Zhang S G, Jiang H F 2020 Chin. Phys. Lett. 37 064202Google Scholar

    [35]

    张颜艳, 闫露露, 姜海峰, 张首刚 2017 时间频率学报 40 130Google Scholar

    Zhang Y Y, Yan L L, Jiang H F, Zhang S G 2017 J. Time Freq. 40 130Google Scholar

  • [1] Xue Zheng-Yue, Li Jun, Liu Xiao-Hai, Wang Jing-Jing, Gao Xiao-Ming, Tan Tu. Measurement and profile inversion of atmospheric N2O absorption spectrum based on laser heterodyne detection. Acta Physica Sinica, 2021, 70(21): 217801. doi: 10.7498/aps.70.20210710
    [2] Ye Hao, Huang Yin-Bo, Wang Chen, Liu Guo-Rong, Lu Xing-Ji, Cao Zhen-Song, Huang Yao, Qi Gang, Mei Hai-Ping. Measurement of uranium isotope ratio by laser ablation absorption spectroscopy. Acta Physica Sinica, 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [3] Yu Qiang, Guo Kun, Chen Jie, Wang Tao, Wang Jin, Shi Xin-Yao, Wu Jian, Zhang Kai, Zhou Pu. Dual-wavelength self-starting mode-locking Er-doped fiber laser with MnPS3 saturable absorber. Acta Physica Sinica, 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [4] Shi Jun-Kai, Wang Guo-Ming, Li Yao, Gao Shu-Yuan, Liu Li-Tuo, Zhou Wei-Hu. Influence of spectral filtering on mode-locking operation of figure-eight Er-doped fiber laser. Acta Physica Sinica, 2019, 68(6): 064206. doi: 10.7498/aps.68.20182144
    [5] Kang Peng, Sun Yu, Wang Jin, Liu An-Wen, Hu Shui-Ming. Measurement of molecular absorption spectrum with a laser locked on a high-finesse cavity. Acta Physica Sinica, 2018, 67(10): 104206. doi: 10.7498/aps.67.20172532
    [6] Zhang Wei-Peng, Yang Hong-Lei, Chen Xin-Yi, Wei Hao-Yun, Li Yan. Optical frequency linked dual-comb absorption spectrum measurement. Acta Physica Sinica, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [7] Shi Jun-Kai, Ji Rong-Yi, Li Yao, Liu Ya, Zhou Wei-Hu. Dual-wavelength mode-locked Er-doped fiber laser based on optimizing gain fiber length. Acta Physica Sinica, 2017, 66(13): 134203. doi: 10.7498/aps.66.134203
    [8] Zhang Pan-Zheng, Wang Xiao-Chao, Li Jing-Hui, Feng Tao, Zhang Zhi-Xiang, Fan Wei, Zhou Shen-Lei, Ma Wei-Xin, Zhu Jian, Lin Zun-Qi. Highly stable and self-started all-fiber Yb3+ doped fiber laser mode-locked by chirped pulse spectral filtering and nonlinear polarization evolution. Acta Physica Sinica, 2016, 65(21): 214207. doi: 10.7498/aps.65.214207
    [9] Dou Zhi-Yuan, Tian Jin-Rong, Li Ke-Xuan, Yu Zhen-Hua, Hu Meng-Ting, Huo Ming-Chao, Song Yan-Rong. High-repetition-rate passively mode-locked erbium-doped all fiber laser. Acta Physica Sinica, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [10] Gan Yu-Lin, Wang Li, Su Xue-Qiong, Xu Si-Wei, Kong Le, Shen Xiang. Thermal conductivity measurement on GeSbSe glasses:Raman scattering spectra method. Acta Physica Sinica, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [11] Dong Xin-Zheng, Yu Zhen-Hua, Tian Jin-Rong, Li Yan-Lin, Dou Zhi-Yuan, Hu Meng-Ting, Song Yan-Rong. A 147 fs mode-locked erbium-doped fiber laser with a carbon nanotubes saturable absorber in evanescent field. Acta Physica Sinica, 2014, 63(3): 034202. doi: 10.7498/aps.63.034202
    [12] Hu Ren-Zhi, Wang Dan, Xie Pin-Hua, Ling Liu-Yi, Qin Min, Li Chuan-Xin, Liu Jian-Guo. Diode laser cavity ring-down spectroscopy for atmospheric NO3 radical measurement. Acta Physica Sinica, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [13] Liu Hua-Gang, Huang Jian-Hong, Weng Wen, Li Jin-Hui, Zheng Hui, Dai Shu-Tao, Zhao Xian, Wang Ji-Yang, Lin Wen-Xiong. High power all-normal-dispersion mode-locked Yb3+-doped double-clad fiber femtosecond laser. Acta Physica Sinica, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [14] Fang Xiao-Hui, Hu Ming-Lie, Song You-Jian, Xie Chen, Chai Lu, Wang Qing-Yue. Mode locked multi-core photonic crystal fiber laser. Acta Physica Sinica, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [15] Zang Hua-Ping, Cao Lei-Feng, Wang Chuan-Ke, Jiang Gang, Wei Lai, Fan Wei, Zhou Wei-Min, Gu Yu-Qiu. Numeric simulation of the diffraction pattern of zigzag grating. Acta Physica Sinica, 2011, 60(3): 034215. doi: 10.7498/aps.60.034215
    [16] Song You-Jian, Hu Ming-Lie, Liu Bo-Wen, Chai Lu, Wang Qing-Yue. High energy femtosecond soliton mode-locking laser based on Yb-doped single polarization large-mode-area photonic crystal fiber. Acta Physica Sinica, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [17] Song You-Jian, Hu Ming-Lie, Liu Qing-Wen, Li Jin-Yan, Chen Wei, Chai Lu, Wang Qing-Yue. A mode-locked Yb3+-doped double-clad large-mode-area fiber laser. Acta Physica Sinica, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [18] Xie Xu-Dong, Wang Qing-Yue, Wang Zhuan, Zhang Wei-Li, Chai Lu. Experimental investigation on temporal and spectral characteristics of femtosecond-scaled ultra-broadband Ti:sapphire oscillator. Acta Physica Sinica, 2005, 54(7): 3159-3163. doi: 10.7498/aps.54.3159
    [19] WANG LIN, YU JIN-LONG, MA XIAO-HONG, YANG EN-ZE, ZHANG YI-MO, CHEN CAL-HE, HUANG CHAO, LI SHI-CHEN. 1.4—6 GHz ERBIUM DOPED FIBER LASER USING RATIONAL HARMONIC MODE-LOCKING TECHNIQUE. Acta Physica Sinica, 1999, 48(5): 876-881. doi: 10.7498/aps.48.876
    [20] HUANG ZHI-JIAN, SUN JUN-QIANG, HUANG DE-XIU. THEORETICAL ANALYSIS OF FAST AND SLOW SATURABLE ABSORBER MODE LOCKING ERBIUM DOPED FIBER LASERS. Acta Physica Sinica, 1998, 47(1): 9-18. doi: 10.7498/aps.47.9
Metrics
  • Abstract views:  4520
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  24 November 2021
  • Accepted Date:  17 December 2021
  • Available Online:  26 January 2022
  • Published Online:  20 April 2022

/

返回文章
返回
Baidu
map