-
构建了可自启动的双波长运转掺铒光纤锁模激光器.通过优化增益光纤长度,利用掺铒光纤在1530 nm附近的再吸收效应调节激光器的增益谱,使激光器在1530 nm和1560 nm附近具有相同的增益强度.实验中采用31 cm掺铒光纤作为增益光纤,以透射式半导体可饱和吸收体作为锁模器件,实现了自启动双波长锁模运转.激光器锁模输出重复频率为58.01 MHz,信噪比为58.2 dB,最高输出功率为4.8 mW.锁模输出的光谱在1532.4 nm和1552.3 nm处具有两个强度接近的谱峰,谱峰间距约为20 nm.该激光器无需手动调节即可实现双波长运转,更便于实际使用.Recently,multi-wavelength pulsed lasers have become a research hotspot due to their versatile applications,such as precision spectroscopy,microwave/terahertz photonics,optical signal processing,and wavelength division multiplexed optical fiber communication systems.As a promising candidate,passively mode-locked fiber laser has the advantages of ultrashort pulse,ultrahigh peak power,compact structure and low-cost.In the existing multi-wavelength passively mode-locked fiber lasers,multi-wavelength mode-locked operation is achieved by adjusting the intracavity modulators to a proper state after laser has worked.It is inconvenient for practical use,so,its application scope is restricted.In this paper,a new method to achieve dual-wavelength mode-locked operation in an erbium-doped fiber laser is proposed. For an erbium-doped fiber,the peaks of both absorption and emission spectra overlap in the 1530 nm-region.So the emission light in the 1530 nm-region will be re-absorbed by the erbium-doped fiber with low pump power or long gain fiber.Utilizing the emission re-absorption effect,the gain spectrum can be modified by different lengths of gain fiber. In the experiment,an all-fiber ring cavity is adopted and a transmission-type semiconductor saturable absorber is used as a modelocker.The cavity consists of ~3.2-m-long single mode fiber and an erbium-doped fiber.Gain fibers with different lengths are used in the cavity to reveal the dependence of emission re-absorption on both gain spectrum and mode-locked output spectrum.According to the experimental results,there are two humps in the amplified spontaneous emission spectrum located in the 1530 nm-region and 1560 nm-region,respectively.With the gain fiber length increasing, gain spectrum in the 1530 nm-region is suppressed,and gain intensity in the 1560 nm-region gradually surpasses that in the 1530 nm-region.Based on the experimental results,self-starting dual-wavelength mode-locked operation is achieved with a 31-cm-long gain fiber.The two spectral peaks with close intensity are located at 1532.4 nm and 1552.3 nm, respectively.The maximum output power is 4.8 mW at a repetition rate of 58.01 MHz and a signal-to-noise ratio of 58.2 dB.This self-starting dual-wavelength mode-locked erbium-doped fiber laser is convenient for practical use and can meet the requirements for many potential applications.
-
Keywords:
- mode-locked lasers /
- dual-wavelength mode-locking operation /
- self-starting mode-locking /
- amplified spontaneous emission
[1] Zhao X, Zheng Z, Liu L, Liu Y, Jiang Y, Yang X, Zhu J 2011 Opt. Express 19 1168
[2] Huang S, Wang Y, Yan P, Zhao J, Li H, Lin R 2014 Opt. Express 22 11417
[3] Zhang Z, Yagi T 1993 Opt. Lett. 18 2126
[4] Zhu C, He J, Wang S 2005 Opt. Lett. 30 561
[5] Xie G Q, Tang D Y, Luo H, Zhang H J, Yu H H, Wang J Y, Tao X T, Jiang M H, Qian L J 2008 Opt. Lett. 33 1872
[6] Yoshioka H, Nakamura S, Ogawa T, Wada S 2010 Opt. Express 18 1479
[7] Schlager J B, Kawanishi S, Saruwatari M 1991 Electron. Lett. 27 2072
[8] Town G E, Chen L, Smith P W E 2000 IEEE Photon. Technol. Lett. 12 1459
[9] Chen Z, Sun H, Ma S, Dutta N K 2008 IEEE Photon. Technol. Lett. 20 2066
[10] Dong H, Zhu G H, Wang Q, Sun H, Dutta N K 2004 Opt. Express 12 4297
[11] Yao J, Yao J, Wang Y, Tjin S C, Zhou Y, Lam Y L, Liu J, Lu C 2001 Opt. Commun. 191 341
[12] Xu Z W, Zhang Z X 2013 Acta Phys. Sin. 62 104210 (in Chinese)[徐中巍, 张祖兴 2013 62 104210]
[13] Yun L, Liu X, Mao D 2012 Opt. Express 20 20992
[14] Zhang H, Tang D, Wu X, Zhao L M 2009 Opt. Express 17 12692
[15] Zhang Z X, Xu Z W, Zhang L 2012 Opt. Express 20 26736
[16] Zhang C, Luo Z Q, Wang J Z, Zhou M, Xu H Y, Cai Z P 2012 Chin. J. Lasers 39 25 (in Chinese)[张成, 罗正钱, 王金章, 周敏, 许惠英, 蔡志平 2012 中国激光 39 25]
[17] Liu M, Zhao N, Liu H, Zheng X W, Luo A P, Luo Z C, Xu W C, Zhao C J, Zhang H, Wen S C 2014 IEEE Photon. Technol. Lett. 26 983
[18] Desurvire E, Simpson J R 1989 J. Lightwave Technol. 7 835
[19] Desurvire E, Zirngibl M, Presby H M, DiGiovanni D 1991 IEEE Photon. Technol. Lett. 3 127
[20] Komarov A, Leblond H, Sanchez F 2005 Phys. Rev. A 71 053809
-
[1] Zhao X, Zheng Z, Liu L, Liu Y, Jiang Y, Yang X, Zhu J 2011 Opt. Express 19 1168
[2] Huang S, Wang Y, Yan P, Zhao J, Li H, Lin R 2014 Opt. Express 22 11417
[3] Zhang Z, Yagi T 1993 Opt. Lett. 18 2126
[4] Zhu C, He J, Wang S 2005 Opt. Lett. 30 561
[5] Xie G Q, Tang D Y, Luo H, Zhang H J, Yu H H, Wang J Y, Tao X T, Jiang M H, Qian L J 2008 Opt. Lett. 33 1872
[6] Yoshioka H, Nakamura S, Ogawa T, Wada S 2010 Opt. Express 18 1479
[7] Schlager J B, Kawanishi S, Saruwatari M 1991 Electron. Lett. 27 2072
[8] Town G E, Chen L, Smith P W E 2000 IEEE Photon. Technol. Lett. 12 1459
[9] Chen Z, Sun H, Ma S, Dutta N K 2008 IEEE Photon. Technol. Lett. 20 2066
[10] Dong H, Zhu G H, Wang Q, Sun H, Dutta N K 2004 Opt. Express 12 4297
[11] Yao J, Yao J, Wang Y, Tjin S C, Zhou Y, Lam Y L, Liu J, Lu C 2001 Opt. Commun. 191 341
[12] Xu Z W, Zhang Z X 2013 Acta Phys. Sin. 62 104210 (in Chinese)[徐中巍, 张祖兴 2013 62 104210]
[13] Yun L, Liu X, Mao D 2012 Opt. Express 20 20992
[14] Zhang H, Tang D, Wu X, Zhao L M 2009 Opt. Express 17 12692
[15] Zhang Z X, Xu Z W, Zhang L 2012 Opt. Express 20 26736
[16] Zhang C, Luo Z Q, Wang J Z, Zhou M, Xu H Y, Cai Z P 2012 Chin. J. Lasers 39 25 (in Chinese)[张成, 罗正钱, 王金章, 周敏, 许惠英, 蔡志平 2012 中国激光 39 25]
[17] Liu M, Zhao N, Liu H, Zheng X W, Luo A P, Luo Z C, Xu W C, Zhao C J, Zhang H, Wen S C 2014 IEEE Photon. Technol. Lett. 26 983
[18] Desurvire E, Simpson J R 1989 J. Lightwave Technol. 7 835
[19] Desurvire E, Zirngibl M, Presby H M, DiGiovanni D 1991 IEEE Photon. Technol. Lett. 3 127
[20] Komarov A, Leblond H, Sanchez F 2005 Phys. Rev. A 71 053809
计量
- 文章访问数: 6083
- PDF下载量: 237
- 被引次数: 0