Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Network failure model based on time series

Yan Yu-Wei Jiang Yuan Yang Song-Qing Yu Rong-Bin Hong Cheng

Citation:

Network failure model based on time series

Yan Yu-Wei, Jiang Yuan, Yang Song-Qing, Yu Rong-Bin, Hong Cheng
PDF
HTML
Get Citation
  • With the development of network science, the static network has been unable to clearly characterize the dynamic process of the network. In real networks, the interaction between individuals evolves rapidly over time. This network model closely links time to interaction process. Compared with static networks, dynamic networks can clearly describe the interaction time of nodes, which has more practical significance. Therefore, how to better describe the behavior changes of networks after being attacked based on time series is an important problem in the existing cascade failure research. In order to better answer this question, a failure model based on time series is proposed in this paper. The model is constructed according to time, activation ratio, number of edges and connection probability. By randomly attacking nodes at a certain time, the effects of four parameters on sequential networks are analyzed. In order to validate the validity and scientificity of this failure model, we use small social networks in the United States. The experimental results show that the model is feasible. The model takes into account the time as well as the spreading dynamics and provides a reference for explaining the dynamic networks in reality.
      Corresponding author: Jiang Yuan, jiangyuan@nchu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61663030, 61663032) and the Innovation Fund Designated for Graduate Students of Jiangxi Province, China (Grant No. YC2021-S680)
    [1]

    Holme P 2003 Europhys. Lett. 64 427Google Scholar

    [2]

    Holme P, Park S M, Kim B J, Edling C R 2007 Physica A 373 821Google Scholar

    [3]

    Onody R N, Castro P A 2004 Phys. Rev. E 70 037103Google Scholar

    [4]

    Albert R Jeong, H, Barabasi A 1999 Nature 401 130Google Scholar

    [5]

    Perra N, Gonçalves B, Pastor R, Vespignani A 2012 Sci. Rep. 2 469Google Scholar

    [6]

    Liao H, Mariani M S, Medo M, Zhang Y C 2017 Phys. Rep. 689 1Google Scholar

    [7]

    Li A, Cornelius S, Liu Y Y, Wang L, Barabasi, A 2016 Science 358 1042Google Scholar

    [8]

    Steven H 2001 Nature 401 268Google Scholar

    [9]

    Remacle, Jean F, Flaherty, Joseph E, Shephard, Mark S 2003 SIAM Rev. 45 53Google Scholar

    [10]

    杨松青, 蒋沅, 童天驰, 严玉为, 淦各升 2021 70 216401Google Scholar

    Yang S Q, Jiang Y, Tong T C, Yan Y W, Gan G S 2021 Acta Phys. Sin. 70 216401Google Scholar

    [11]

    Sole R V, Rosas M, Corominas B, Valverde S 2007 Phys. Rev. E 77 26102Google Scholar

    [12]

    Goh K I, Kahng B, Kim D 2002 Phys. Rev. Lett. 88 108701Google Scholar

    [13]

    Holme P, Kim B J, Yoon C N, Han S K 2002 Phys. Rev. E 65 056109Google Scholar

    [14]

    Albert R, Jeong H, Barabasi A. L 2000 Nature 406 387Google Scholar

    [15]

    Zhou T, Wang B H 2005 Chin. Phys. Lett. 22 1072Google Scholar

    [16]

    Motter A E, Lai Y C 2003 Phys. Rev. E 66 065102Google Scholar

    [17]

    Dou B L, Wang X G, Zhang S Y 2010 Physica A 389 2310Google Scholar

    [18]

    Wang J 2012 Nonlinear Dyn. 70 1959Google Scholar

    [19]

    Li S, Li L, Yang Y, Luo Q 2012 Nonlinear Dyn. 69 837Google Scholar

    [20]

    Wang J, Rong L, Liang Z, Zhang Z 2008 Physica A 387 6671Google Scholar

    [21]

    Liu J, Xiong Q Y, Shi X, Wang K, Shi W R 2015 Chin. Phys. B 24 371Google Scholar

    [22]

    唐亮, 焦鹏, 李纪康, 靖可, 靳志宏 2018 控制与决策 33 116Google Scholar

    Tang L, Jiao P, Li J K, Jing K, Le Z H 2018 Control and Decision 33 116Google Scholar

    [23]

    Duan D L, Ling X D, Wu X Y, Ouyang D H, Zhong B 2014 Physica A 2014 416 252Google Scholar

    [24]

    郝羽成, 李成兵, 魏磊 2018 系统工程与电子技术 40 2282Google Scholar

    Hao Y C, Li C, Wei L 2018 Syst. Eng. Electron. 40 2282Google Scholar

  • 图 1  时序网络图 (a)T = 1; (b) T = 2; (c) T = 3; (d) T = 4; (e) T = 5; (f) T = 6; (g) T = All

    Figure 1.  Sequential network: (a) T = 1; (b) T = 2; (c) T = 3; (d) T = 4; (e) T = 5; (f) T = 6; (g) T = All.

    图 2  时序网络传播示意图 (数字表示节点编号) (a) T = 1; (b) T = 2; (c) T = 3

    Figure 2.  Propagation of sequential network (number indicates the node number): (a) T = 1; (b) T = 2; (c) T = 3.

    图 3  静态图与时序网络图 (a) 静态图; (b) 静态网络失效图; (c) 时序图

    Figure 3.  Static diagram and sequential network diagram: (a) Static diagram; (b) static network failure diagram; (c) sequential network.

    图 4  不同激活参数的网络鲁棒性

    Figure 4.  Robustness of networks under different activation parameters.

    图 5  不同激活参数下的网络生成图 (a) pactive = 0.1; (b) pactive = 0.2; (c) pactive = 0.3; (d) pactive = 0.5; (e) pactive = 0.6; (f) pactive = 1.0

    Figure 5.  Network diagram with different activation parameters: (a) pactive = 0.1; (b) pactive = 0.2; (c) pactive = 0.3; (d) pactive = 0.5; (e) pactive = 0.6; (f) pactive = 1.0.

    图 6  不同边数以及连接概率下的网络鲁棒性 (a)不同连边数; (b)不同连接概率

    Figure 6.  Network robustness under different connection numbers and connection probabilities: (a) Different edge numbers; (b) different connection probabilities.

    图 7  不同连接数以及连接概率下的网络生成图 (a) M = 1; (b) M = 2; (c) M = 5; (d) M = 8; (e) M = 10; (f) pcon = 0.1; (g) pcon = 0.2; (h) pcon = 0.5; (i) pcon = 0.6; (j) pcon = 1

    Figure 7.  Network diagram with different connection numbers and connection Probability: (a)M = 1; (b)M = 2; (c) M = 5; (d) M = 8; (e) M = 10; (f) pcon = 0.1; (g) pcon = 0.2; (h) pcon = 0.5; (i) pcon = 0.6; (j) pcon = 1.

    图 8  网络鲁棒性

    Figure 8.  Network robustness.

    图 9  不同时间下的网络鲁棒性

    Figure 9.  Network robustness under different time.

    图 10  不同时间下的网络生成图 (a) T = 2; (b) T = 5; (c) T = 10; (d) T = 20; (e) T = 30

    Figure 10.  Network diagram under different times: (a) T = 2; (b) T = 5; (c) T = 10; (d) T = 20; (e) T = 30.

    图 11  不同时间参数的网络鲁棒性

    Figure 11.  Network robustness under different time.

    图 12  不同时间下的网络图 (a) T = 2; (b) T = 5; (c) T = 10; (d) T = 20; (e) T = 30

    Figure 12.  Network diagram under different times: (a) T = 2; (b) T = 5; (c) T = 10; (d) T = 20; (e) T = 30.

    图 13  美国小型社交网络级联传递规模图

    Figure 13.  Scale of transmission through small social networks in the United States

    表 1  激活参数下的网络特征

    Table 1.  Statistical characteristics of the networks under activation parameters.

    pactivenm$\langle {k^{ { { {\rm{in} }/{\rm{out} } } } } } \rangle$
    0.1200320.16
    0.2200680.34
    0.32001910.955
    0.52007873.945
    0.62008434.215
    1.0200320316.015
    DownLoad: CSV

    表 2  不同连接数以及连接概率下的网络特征

    Table 2.  Statistical characteristics of the networks under different connection numbers and connection probabilities.

    Parameternm$\langle {k^{ {\text{in} }/{\text{out} } } } \rangle$
    M = 1200120.060
    M = 2200240.120
    M = 52001430.715
    M = 82005072.535
    M = 102008534.265
    pcon = 0.1200160.080
    pcon = 0.2200450.225
    pcon = 0.52001790.895
    pcon = 0.62002761.380
    pcon = 1.02009834.915
    DownLoad: CSV

    表 3  不同时间下的网络特征

    Table 3.  Statistical characteristics of the networks under different time.

    Tnm$\langle {k^{ {\text{in} }/{\text{out} } } } \rangle$
    2200570.285
    5200680.340
    10200700.350
    20200810.405
    30200710.355
    DownLoad: CSV

    表 4  不同时间下的网络特征

    Table 4.  Statistical characteristics of the networks under different times.

    Tnm$\langle {k^{ {\text{in} }/{\text{out} } } } \rangle$
    22009314.655
    5200525826.290
    102001168958.445
    202001546477.320
    3020023062115.310
    DownLoad: CSV

    表 5  美国小型社交网络的接触时刻

    Table 5.  Contact time of small social networks in the United States.

    Source nodeTarget nodeTimeSource nodeTarget nodeTimeSource nodeTarget nodeTime
    ${v_1}$${v_{12}}$4${v_3}$${v_{13}}$2${v_{16}}$${v_{10}}$2
    ${v_1}$${v_{18}}$9${v_3}$${v_{18}}$2${v_{16}}$${v_{12}}$4
    ${v_2}$${v_{10}}$7${v_3}$${v_{25}}$2${v_{16}}$${v_{14}}$2
    ${v_2}$${v_{12}}$1${v_4}$${v_{10}}$4${v_{16}}$${v_{18}}$4
    ${v_2}$${v_{13}}$1${v_4}$${v_{12}}$1${v_{16}}$${v_{32}}$1
    ${v_2}$${v_{14}}$1${v_4}$${v_{27}}$1${v_{17}}$${v_{10}}$3
    ${v_2}$${v_{18}}$1${v_4}$${v_{32}}$4${v_{18}}$${v_{12}}$2
    ${v_3}$${v_{10}}$2${v_5}$${v_{12}}$4${v_{18}}$${v_{13}}$1
    ${v_5}$${v_{13}}$1${v_8}$${v_{10}}$1${v_{18}}$${v_{14}}$2
    ${v_5}$${v_{18}}$5${v_8}$${v_{12}}$2${v_{19}}$${v_{14}}$7
    ${v_5}$${v_{20}}$1${v_8}$${v_{13}}$7${v_{21}}$${v_{13}}$1
    ${v_5}$${v_{27}}$1${v_8}$${v_{15}}$1${v_{21}}$${v_{20}}$4
    ${v_7}$${v_1}$1${v_8}$${v_{18}}$2${v_{22}}$${v_{10}}$3
    ${v_7}$${v_{18}}$1${v_8}$${v_{20}}$2${v_{22}}$${v_{12}}$4
    ${v_7}$${v_{33}}$1${v_8}$${v_{27}}$2${v_{22}}$${v_{13}}$1
    ${v_8}$${v_2}$1${v_8}$${v_{32}}$2${v_{22}}$${v_{18}}$11
    ${v_9}$${v_1}$3${v_{11}}$${v_{10}}$3${v_{22}}$${v_{27}}$3
    ${v_9}$${v_5}$2${v_{11}}$${v_{12}}$1${v_{22}}$${v_{31}}$1
    ${v_9}$${v_{12}}$1${v_{11}}$${v_{14}}$6${v_{24}}$${v_3}$2
    ${v_9}$${v_{18}}$1${v_{11}}$${v_{18}}$1${v_{24}}$${v_6}$1
    ${v_9}$${v_{33}}$2${v_{11}}$${v_{25}}$1${v_{24}}$${v_{10}}$8
    ${v_{10}}$${v_{12}}$1${v_{11}}$${v_{30}}$3${v_{24}}$${v_{12}}$4
    ${v_{10}}$${v_{13}}$1${v_{11}}$${v_{32}}$1${v_{24}}$${v_{13}}$3
    ${v_{10}}$${v_{18}}$2${v_{16}}$${v_2}$1${v_{24}}$${v_{18}}$2
    ${v_{24}}$${v_{25}}$3${v_{28}}$${v_5}$10${v_{33}}$${v_{10}}$2
    ${v_{24}}$${v_{32}}$3${v_{28}}$${v_{12}}$2${v_{33}}$${v_{14}}$2
    ${v_{24}}$${v_{33}}$1${v_{28}}$${v_{23}}$1${v_{33}}$${v_{25}}$1
    ${v_{24}}$${v_{35}}$1${v_{29}}$${v_3}$1${v_{34}}$${v_{10}}$1
    ${v_{25}}$${v_{10}}$1${v_{29}}$${v_{10}}$2${v_{34}}$${v_{12}}$9
    ${v_{25}}$${v_{12}}$5${v_{29}}$${v_{12}}$6${v_{34}}$${v_{13}}$1
    ${v_{25}}$${v_{14}}$4${v_{29}}$${v_{14}}$2${v_{34}}$${v_{14}}$1
    ${v_{25}}$${v_{18}}$2${v_{29}}$${v_{15}}$2${v_{34}}$${v_{18}}$7
    ${v_{26}}$${v_{10}}$3${v_{29}}$${v_{25}}$1${v_{34}}$${v_{20}}$2
    ${v_{26}}$${v_{12}}$1${v_{29}}$${v_{32}}$4${v_{35}}$${v_2}$1
    ${v_{26}}$${v_{14}}$12${v_{30}}$${v_{13}}$1${v_{35}}$${v_6}$1
    ${v_{26}}$${v_{15}}$2${v_{30}}$${v_{14}}$7${v_{35}}$${v_{10}}$2
    ${v_{26}}$${v_{18}}$1${v_{31}}$${v_{10}}$2${v_{35}}$${v_{12}}$2
    ${v_{26}}$${v_{30}}$3${v_{31}}$${v_{13}}$3${v_{35}}$${v_{13}}$1
    ${v_{35}}$${v_{14}}$4${v_{35}}$${v_{25}}$2${v_{35}}$${v_{32}}$3
    ${v_{35}}$${v_{18}}$1
    DownLoad: CSV
    Baidu
  • [1]

    Holme P 2003 Europhys. Lett. 64 427Google Scholar

    [2]

    Holme P, Park S M, Kim B J, Edling C R 2007 Physica A 373 821Google Scholar

    [3]

    Onody R N, Castro P A 2004 Phys. Rev. E 70 037103Google Scholar

    [4]

    Albert R Jeong, H, Barabasi A 1999 Nature 401 130Google Scholar

    [5]

    Perra N, Gonçalves B, Pastor R, Vespignani A 2012 Sci. Rep. 2 469Google Scholar

    [6]

    Liao H, Mariani M S, Medo M, Zhang Y C 2017 Phys. Rep. 689 1Google Scholar

    [7]

    Li A, Cornelius S, Liu Y Y, Wang L, Barabasi, A 2016 Science 358 1042Google Scholar

    [8]

    Steven H 2001 Nature 401 268Google Scholar

    [9]

    Remacle, Jean F, Flaherty, Joseph E, Shephard, Mark S 2003 SIAM Rev. 45 53Google Scholar

    [10]

    杨松青, 蒋沅, 童天驰, 严玉为, 淦各升 2021 70 216401Google Scholar

    Yang S Q, Jiang Y, Tong T C, Yan Y W, Gan G S 2021 Acta Phys. Sin. 70 216401Google Scholar

    [11]

    Sole R V, Rosas M, Corominas B, Valverde S 2007 Phys. Rev. E 77 26102Google Scholar

    [12]

    Goh K I, Kahng B, Kim D 2002 Phys. Rev. Lett. 88 108701Google Scholar

    [13]

    Holme P, Kim B J, Yoon C N, Han S K 2002 Phys. Rev. E 65 056109Google Scholar

    [14]

    Albert R, Jeong H, Barabasi A. L 2000 Nature 406 387Google Scholar

    [15]

    Zhou T, Wang B H 2005 Chin. Phys. Lett. 22 1072Google Scholar

    [16]

    Motter A E, Lai Y C 2003 Phys. Rev. E 66 065102Google Scholar

    [17]

    Dou B L, Wang X G, Zhang S Y 2010 Physica A 389 2310Google Scholar

    [18]

    Wang J 2012 Nonlinear Dyn. 70 1959Google Scholar

    [19]

    Li S, Li L, Yang Y, Luo Q 2012 Nonlinear Dyn. 69 837Google Scholar

    [20]

    Wang J, Rong L, Liang Z, Zhang Z 2008 Physica A 387 6671Google Scholar

    [21]

    Liu J, Xiong Q Y, Shi X, Wang K, Shi W R 2015 Chin. Phys. B 24 371Google Scholar

    [22]

    唐亮, 焦鹏, 李纪康, 靖可, 靳志宏 2018 控制与决策 33 116Google Scholar

    Tang L, Jiao P, Li J K, Jing K, Le Z H 2018 Control and Decision 33 116Google Scholar

    [23]

    Duan D L, Ling X D, Wu X Y, Ouyang D H, Zhong B 2014 Physica A 2014 416 252Google Scholar

    [24]

    郝羽成, 李成兵, 魏磊 2018 系统工程与电子技术 40 2282Google Scholar

    Hao Y C, Li C, Wei L 2018 Syst. Eng. Electron. 40 2282Google Scholar

  • [1] Wang Jian-Wei, Zhao Nai-Xuan, Wang Chu-Pei, Xiang Ling-Hui, Wen Ting-Xin. Robustness paradox of cascading dynamics in interdependent networks. Acta Physica Sinica, 2024, 73(21): 218901. doi: 10.7498/aps.73.20241002
    [2] Yang Wu-Hua, Wang Cai-Lin, Zhang Ru-Liang, Zhang Chao, Su Le. Study on avalanche ruggedness of high voltage IGBTs. Acta Physica Sinica, 2023, 72(7): 078501. doi: 10.7498/aps.72.20222248
    [3] Cascading failures on complex networks with weak interdependency groups. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20210850
    [4] Pan Qian-Qian, Liu Run-Ran, Jia Chun-Xiao. Cascading failures on complex networks with weak interdependency groups. Acta Physica Sinica, 2022, 71(11): 110505. doi: 10.7498/aps.70.20210850
    [5] Jiang Wen-Jun, Liu Run-Ran, Fan Tian-Long, Liu Shuang-Shuang, Lü Lin-Yuan. Overview of precaution and recovery strategies for cascading failures in multilayer networks. Acta Physica Sinica, 2020, 69(8): 088904. doi: 10.7498/aps.69.20192000
    [6] Han Wei-Tao, Yi Peng, Ma Hai-Long, Zhang Peng, Tian Le. Robustness of interdependent networks withheterogeneous weak inter-layer links. Acta Physica Sinica, 2019, 68(18): 186401. doi: 10.7498/aps.68.20190761
    [7] Li Jun, Li Da-Chao. Wind power time series prediction using optimized kernel extreme learning machine method. Acta Physica Sinica, 2016, 65(13): 130501. doi: 10.7498/aps.65.130501
    [8] Gao Yan-Li, Chen Shi-Ming. A global homogenizing coupled pattern of interdependent networks. Acta Physica Sinica, 2016, 65(14): 148901. doi: 10.7498/aps.65.148901
    [9] Peng Xing-Zhao, Yao Hong, Du Jun, Wang Zhe, Ding Chao. Load-induced cascading failure in interdependent network. Acta Physica Sinica, 2015, 64(4): 048901. doi: 10.7498/aps.64.048901
    [10] Tian Zhong-Da, Li Shu-Jiang, Wang Yan-Hong, Gao Xian-Wen. Chaotic characteristics analysis and prediction for short-term wind speed time series. Acta Physica Sinica, 2015, 64(3): 030506. doi: 10.7498/aps.64.030506
    [11] Chen Shi-Ming, Lü Hui, Xu Qing-Gang, Xu Yun-Fei, Lai Qiang. The model of interdependent network based on positive/negativecorrelation of the degree and its robustness study. Acta Physica Sinica, 2015, 64(4): 048902. doi: 10.7498/aps.64.048902
    [12] Ouyang Bo, Jin Xin-Yu, Xia Yong-Xiang, Jiang Lu-Rong, Wu Duan-Po. Dynamic interplay between epidemics and cascades:Epidemic outbreaks in uncorrelated networks. Acta Physica Sinica, 2014, 63(21): 218902. doi: 10.7498/aps.63.218902
    [13] Yuan Ming. A cascading failure model of complex network with hierarchy structure. Acta Physica Sinica, 2014, 63(22): 220501. doi: 10.7498/aps.63.220501
    [14] Chen Shi-Ming, Zou Xiao-Qun, Lü Hui, Xu Qing-Gang. Research on robustness of interdependent network for suppressing cascading failure. Acta Physica Sinica, 2014, 63(2): 028902. doi: 10.7498/aps.63.028902
    [15] Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng. Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent. Acta Physica Sinica, 2012, 61(6): 060503. doi: 10.7498/aps.61.060503
    [16] Wu Jian-Jun, Xu Shang-Yi, Sun Hui-Jun. Detrended fluctuation analysis of time series in mixed traffic flow. Acta Physica Sinica, 2011, 60(1): 019502. doi: 10.7498/aps.60.019502
    [17] Xiu Chun-Bo, Xu Meng. Multi-step prediction method for time series based on chaotic operator network. Acta Physica Sinica, 2010, 59(11): 7650-7656. doi: 10.7498/aps.59.7650
    [18] Dong Zhao, Li Xiang. The study of network motifs induced from discrete time series. Acta Physica Sinica, 2010, 59(3): 1600-1607. doi: 10.7498/aps.59.1600
    [19] Zeng Gao-Rong, Qiu Zheng-Ding. Evaluation model for robustness of digital watermarking. Acta Physica Sinica, 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
    [20] Wu Yan-Dong, Xie Hong-Bo. A new method to recognize determinism in time series. Acta Physica Sinica, 2007, 56(11): 6294-6300. doi: 10.7498/aps.56.6294
Metrics
  • Abstract views:  4838
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  09 August 2021
  • Accepted Date:  09 December 2021
  • Available Online:  26 January 2022
  • Published Online:  20 April 2022

/

返回文章
返回
Baidu
map