[1] |
Yan Yu-Wei, Jiang Yuan, Yang Song-Qing, Yu Rong-Bin, Hong Cheng. Network failure model based on time series. Acta Physica Sinica,
2022, 71(8): 088901.
doi: 10.7498/aps.71.20212106
|
[2] |
Li Jun, Li Da-Chao. Wind power time series prediction using optimized kernel extreme learning machine method. Acta Physica Sinica,
2016, 65(13): 130501.
doi: 10.7498/aps.65.130501
|
[3] |
Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue. Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica,
2015, 64(11): 110503.
doi: 10.7498/aps.64.110503
|
[4] |
Tian Zhong-Da, Li Shu-Jiang, Wang Yan-Hong, Gao Xian-Wen. Chaotic characteristics analysis and prediction for short-term wind speed time series. Acta Physica Sinica,
2015, 64(3): 030506.
doi: 10.7498/aps.64.030506
|
[5] |
Hou Feng-Zhen, Huang Xiao-Lin, Zhuang Jian-Jun, Huo Cheng-Yu, Ning Xin-Bao. Multi-scale strategy and data surrogating test: two elements for the detection of time irreversibility in heart rate variability. Acta Physica Sinica,
2012, 61(22): 220507.
doi: 10.7498/aps.61.220507
|
[6] |
Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng. Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent. Acta Physica Sinica,
2012, 61(6): 060503.
doi: 10.7498/aps.61.060503
|
[7] |
Wu Jian-Jun, Xu Shang-Yi, Sun Hui-Jun. Detrended fluctuation analysis of time series in mixed traffic flow. Acta Physica Sinica,
2011, 60(1): 019502.
doi: 10.7498/aps.60.019502
|
[8] |
Xiu Chun-Bo, Xu Meng. Multi-step prediction method for time series based on chaotic operator network. Acta Physica Sinica,
2010, 59(11): 7650-7656.
doi: 10.7498/aps.59.7650
|
[9] |
Dong Zhao, Li Xiang. The study of network motifs induced from discrete time series. Acta Physica Sinica,
2010, 59(3): 1600-1607.
doi: 10.7498/aps.59.1600
|
[10] |
Du Jie, Cao Yi-Jia, Liu Zhi-Jian, Xu Li-Zhong, Jiang Quan-Yuan, Guo Chuang-Xin, Lu Jin-Gui. Local higher-order Volterra filter multi-step prediction model of chaotic time series. Acta Physica Sinica,
2009, 58(9): 5997-6005.
doi: 10.7498/aps.58.5997
|
[11] |
Liu Jin-Hai, Zhang Hua-Guang, Feng Jian. Investigation of chaotic behavior for press time series of oil pipeline. Acta Physica Sinica,
2008, 57(11): 6868-6877.
doi: 10.7498/aps.57.6868
|
[12] |
Yang Yong-Feng, Ren Xing-Min, Qin Wei-Yang, Wu Ya-Feng, Zhi Xi-Zhe. Prediction of chaotic time series based on EMD method. Acta Physica Sinica,
2008, 57(10): 6139-6144.
doi: 10.7498/aps.57.6139
|
[13] |
Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica,
2008, 57(10): 6120-6131.
doi: 10.7498/aps.57.6120
|
[14] |
Jiang Ke-Yu, Cai Zhi-Ming, Lu Zhen-Bo. A test method for weak nonlinearity in time series. Acta Physica Sinica,
2008, 57(3): 1471-1476.
doi: 10.7498/aps.57.1471
|
[15] |
Yan Hua, Wei Ping, Xiao Xian-Ci. An adaptive approach based on Bernstein polynomial to predict chaotic time series. Acta Physica Sinica,
2007, 56(9): 5111-5118.
doi: 10.7498/aps.56.5111
|
[16] |
Song Ai-Jun, Han Lei. Study of nonlinear identification of time series of vibration on transducer in ultrasonic bonding system. Acta Physica Sinica,
2007, 56(7): 3820-3826.
doi: 10.7498/aps.56.3820
|
[17] |
Ren Ren, Xu Jin, Zhu Shi-Hua. Prediction of chaotic time sequence using least squares support vector domain. Acta Physica Sinica,
2006, 55(2): 555-563.
doi: 10.7498/aps.55.555
|
[18] |
Lei Min, Meng Guang, Feng Zheng-Jin. Detecting the nonlinearity for time series sampled from continuous dynamic systems. Acta Physica Sinica,
2005, 54(3): 1059-1063.
doi: 10.7498/aps.54.1059
|
[19] |
LIU YAO-ZONG, WEN XI-SEN, HU NIAO-QING. A NEW METHOD OF SURROGATE DATA TEST FOR LINEAR NON-GAUSSIAN TIME SERIES. Acta Physica Sinica,
2001, 50(7): 1241-1247.
doi: 10.7498/aps.50.1241
|
[20] |
LIU YAO-ZONG, WEN XI-SEN, HU NIAO-QING. SURROGATE DATA TEST FOR THE LINEAR NON-GAUSSIAN TIME SERIES WITH NON-MINIMUM PHASE. Acta Physica Sinica,
2001, 50(4): 633-637.
doi: 10.7498/aps.50.633
|