Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Revealing Time Crystal Robustness Through Theoretical Parameter Analysis

LI Hongxia LI Tingmei WANG Zengpu CHEN Yu-Hui ZHANG Xiangdong

Citation:

Revealing Time Crystal Robustness Through Theoretical Parameter Analysis

LI Hongxia, LI Tingmei, WANG Zengpu, CHEN Yu-Hui, ZHANG Xiangdong
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Continuous time crystals represent a novel state of many-body systems, self-organizing into timeperiodic oscillations without the need for external periodic driving. Recent experiments have demonstrated the realization of such systems in dissipative solid-state materials, where persistent temporal order is autonomously sustained. A defining characteristic of time crystals is their robustness, signifying the ability to maintain rhythmic behavior despite various disturbances, including fluctuations in internal parameters and external noise., which is of both scientific value and potential for technological applications Although prior studies have established the existence of robustness in specific experimental parameters, a systematic framework for quantifying and predicting their resilience to perturbations is lacking, and the underlying physics of this robustness remains inadequately understood. Key unresolved questions include how nonlinear interactions and feedback mechanisms contribute to stability, and what the critical thresholds are for parameter variations beyond which temporal order collapses.
    This paper addresses these gaps by systematically analyzing how internal parameters and external influences affect the oscillation period and overall stability. Internally, the dynamics are dictated by dipoledipole interactions and atomic transition strengths, which define the system’ s emergent temporal symmetry breaking. Externally, the system’ s response is controlled by the intensity of the optical driving field and the rates of energy dissipation. A key finding is the identification of an intrinsic feedback mechanism that dynamically stabilizes the time crystal. This mechanism acts as a restorative force, correcting for deviations caused by minor disturbances and maintaining the coherence of the oscillatory phase.
    Moreover, the system displays nonlinear dynamical behavior, characterized by two distinct regimes: one where stable oscillations continue under moderate disturbances, and another where stronger disturbances induce a dynamical phase transition, leading to disordered states or a switch between dynamically unstable and stable states. These results provide a thorough understanding of the diverse behaviors observed in continuous time crystals and create a vital theoretical foundation for exploiting their unique properties in advanced applications like quantum information processing and precision metrology.
  • [1]

    Li T, Gong Z X, Yin Z Q, Quan H, Yin X, Zhang P, Duan L M, Zhang X 2012 Phys. Rev. Lett. 109163001

    [2]

    Sacha K 2015 Phys. Rev. A 91033617

    [3]

    Zhang J, Hess P W, Kyprianidis A, Becker P, Lee A, Smith J, Pagano G, Potirniche I D, Potter A C, Vishwanath A, Yao N Y, Monroe C 2017 Nature 543217

    [4]

    Wilczek F 2012 Phys. Rev. Lett. 109160401

    [5]

    Shapere A, Wilczek F 2012 Phys. Rev. Lett. 109160402

    [6]

    Else D V, Bauer B, Nayak C 2016 Phys. Rev. Lett. 117090402

    [7]

    Sacha K, Zakrzewski J 2017 Rep. Prog. Phys. 81016401

    [8]

    Yao N Y, Nayak C 2018 Phys. Today 7140

    [9]

    Cai Z, Huang Y, Liu W V 2020 Chin. Phys. Lett. 37050503

    [10]

    Hannaford P, Sacha K 2022 Europhys. Lett. 13910001

    [11]

    Tucker K, Zhu B, Lewis-Swan R J, Marino J, Jimenez F, Restrepo J G, Rey A M 2018 New J. Phys. 20123003

    [12]

    Keßler H, Cosme J G, Hemmerling M, Mathey L, Hemmerich A 2019 Phys. Rev. A 99053605

    [13]

    Liu T, Ou J Y, MacDonald K F, Zheludev N I 2023 Nat. Phys. 19986

    [14]

    Choi S, Choi J, Landig R, Kucsko G, Zhou H, Isoya J, Jelezko F, Onoda S, Sumiya H, Khemani V, von Keyserlingk C, Yao N Y, Demler E, Lukin M D 2017 Nature 543221

    [15]

    Russomanno A, Iemini F, Dalmonte M, Fazio R 2017 Phys. Rev. B 95214307

    [16]

    Smits J, Liao L, Stoof H, van der Straten P 2018 Phys. Rev. Lett. 121185301

    [17]

    Autti S, Eltsov V, Volovik G 2018 Phys. Rev. Lett. 120215301

    [18]

    Kyprianidis A, Machado F, Morong W, Becker P, Collins K S, Else D V, Feng L, Hess P W, Nayak C, Pagano G, Yao N Y, Monroe C 2021 Science 3721192

    [19]

    Randall J, Bradley C, Van Der Gronden F, Galicia A, Abobeih M, Markham M, Twitchen D, Machado F, Yao N, Taminiau T 2021 Science 3741474

    [20]

    Mi X, Ippoliti M, Quintana C, Greene A, Chen Z, Gross J, Arute F, Arya K, Atalaya J, Babbush R, Bardin J C, Basso J, Bengtsson A, Bilmes A, Bourassa A, Brill L, Broughton M, Buckley B B, Buell D A, Burkett B, Bushnell N, Chiaro B, Collins R, Courtney W, Debroy D, Demura S, Derk A R, Dunsworth A, Eppens D, Erickson C, Farhi E, Fowler A G, Foxen B, Gidney C, Giustina M, Harrigan M P, Harrington S D, Hilton J, Ho A, Hong S, Huang T, Huff A, Huggins W J, Ioffe L B, Isakov V Sergei, Iveland J, Jeffrey E, Jiang Z, Jones C, Kafri D, Khattar T, Kim S, Kitaev A, Klimov V Paul, Korotkov A N, Kostritsa F, Landhuis D, Laptev P, Lee J, Lee K, Locharla A, Lucero E, Martin O, McClean J R, McCourt T, McEwen M, Miao K C, Mohseni M, Montazeri S, Mruczkiewicz W, Naaman O, Neeley M, Neill C, Newman M, Niu M Y, O’Brien T E, Opremcak A, Ostby E, Pato B, Petukhov A, Rubin N C, Sank D, Satzinger K J, Shvarts V, Su Y, Strain D, Szalay M, Trevithick M D, Villalonga B, White T, Yao Z J, Yeh P, Yoo J, Zalcman A, Neven H, Boixo S, Smelyanskiy V, Megrant A, Kelly J, Chen Y, Sondhi S L, Moessner R, Kechedzhi K, Khemani V, Roushan P 2022 Nature 601531

    [21]

    Zhang X, Jiang W, Deng J, Wang K, Chen J, Zhang P, Ren W, Dong H, Xu S, Gao Y, Jin F, Zhu X, Guo Q, Li C Hekangand Song, Gorshkov V Alexey, Iadecola T, Liu F, Gong Z X, Wang Z, Deng D L, Wang H 2022 Nature 607468

    [22]

    Huang B, Wu Y H, Liu W V 2018 Phys. Rev. Lett. 120110603

    [23]

    Pizzi A, Knolle J, Nunnenkamp A 2019 Phys. Rev. Lett. 123150601

    [24]

    Rovny J, Blum R L, Barrett S E 2018 Phys. Rev. Lett. 120180603

    [25]

    Pal S, Nishad N, Mahesh T, Sreejith G 2018 Phys. Rev. Lett. 120180602

    [26]

    O’ Sullivan J, Lunt O, Zollitsch C W, Thewalt M, Morton J J, Pal A 2020 New J. Phys. 22085001

    [27]

    Horowicz Y, Katz O, Raz O, Firstenberg O 2021 Proc. Natl. Acad. Sci. 118 e2106400118

    [28]

    Cabot A, Carollo F, Lesanovsky I 2022 Phys. Rev. B 106134311

    [29]

    Khemani V, Lazarides A, Moessner R, Sondhi S L 2016 Phys. Rev. Lett. 116250401

    [30]

    Vlasov R, Lemeza A, Gladush M 2013 Laser Phys. Lett. 10045401

    [31]

    Gong Z, Hamazaki R, Ueda M 2018 Phys. Rev. Lett. 120040404

    [32]

    Iemini F, Russomanno A, Keeling J, Schirò M, Dalmonte M, Fazio R 2018 Phys. Rev. Lett. 121035301

    [33]

    Buča B, Tindall J, Jaksch D 2019 Nat. Commun. 101730

    [34]

    Piazza F, Ritsch H 2015 Phys. Rev. Lett. 115163601

    [35]

    Booker C, Buča B, Jaksch D 2020 New J. Phys. 22085007

    [36]

    Keßler H, Kongkhambut P, Georges C, Mathey L, Cosme J G, Hemmerich A 2021 Phys. Rev. Lett. 127043602

    [37]

    Taheri H, Matsko A B, Maleki L, Sacha K 2022 Nat. Commun. 13848

    [38]

    Martínez-Romero J S, Halevi P 2018 Phys.Rev.A 98053852

    [39]

    Dong R Y, Liu Y M, Sui J Y, Zhang H F 2023 IEEE Trans. Antennas Propag. 72674

    [40]

    Dong R y, Wang S, Zou J H, Zhang H f 2023 Opt. Lett. 482627

    [41]

    Valdez-García J, Halevi P 2024 Phys. Rev. A 109063517

    [42]

    Kongkhambut P, Skulte J, Mathey L, Cosme J G, Hemmerich A, Keßler H 2022 Science 377670

    [43]

    Chen Y H, Zhang X 2023 Nat. Commun. 146161

    [44]

    Wadenpfuhl K, Adams C S 2023 Phys. Rev. Lett. 131143002

    [45]

    Krishna M, Solanki P, Hajdušek M, Vinjanampathy S 2023 Phys. Rev. Lett. 130150401

    [46]

    Wu X, Wang Z, Yang F, Gao R, Liang C, Tey M K, Li X, Pohl T, You L 2024 Nat. Phys. 201389

    [47]

    Ding D, Bai Z, Liu Z, Shi B, Guo G, Li W, Adams C S 2024 Sci. Adv. 10 eadl5893

    [48]

    Zhou P, Li X X, Xing X Y, Chen Y H, Zhang X D 2022 Acta Phys. Sin. 71102

    [49]

    Calderón O, Antón M, Carreño F 2003 Eur. Phys. J. D 2577

    [50]

    Chen Y H, Horvath S P, Longdell J J, Zhang X 2021 Phys. Rev. Lett. 126110601

    [51]

    Greilich A, Kopteva N, Kamenskii A, Sokolov P, Korenev V, Bayer M 2024 Nat. Phys. 20631

    [52]

    Chen S, Raha M, Phenicie C M, Ourari S, Thompson J D 2020 Science 370592

    [53]

    Lee T E, Häffner H, Cross M 2011 Phys. Rev. A:At., Mol., Opt. Phys. 84031402

    [54]

    Kos P, Ljubotina M, Prosen T 2018 Phys. Rev. X 8021062

    [55]

    Scarlatella O, Clerk A A, Fazio R, Schiró M 2021 Phys. Rev. X 11031018

    [56]

    Li T, Li H X, Chen Y H, Zhang X 2024 Europhys. Lett. 14755001

  • [1] YANG Wuhua, SHEN Sihao, JIA Liping, ZHANG Chao, ZHANG Ruliang, WANG Cailin. Study on the robustness of IGCT at the Switching Self-Clamping Mode. Acta Physica Sinica, doi: 10.7498/aps.74.20250120
    [2] Wang Jian-Wei, Zhao Nai-Xuan, Wang Chu-Pei, Xiang Ling-Hui, Wen Ting-Xin. Robustness paradox of cascading dynamics in interdependent networks. Acta Physica Sinica, doi: 10.7498/aps.73.20241002
    [3] Wang Yu-Kun, Li Ze-Yang, Xu Kang, Wang Zi-Zheng. Self-testing criteria for preparing-measuring qubit system. Acta Physica Sinica, doi: 10.7498/aps.72.20222431
    [4] Yang Wu-Hua, Wang Cai-Lin, Zhang Ru-Liang, Zhang Chao, Su Le. Study on avalanche ruggedness of high voltage IGBTs. Acta Physica Sinica, doi: 10.7498/aps.72.20222248
    [5] Yan Yu-Wei, Jiang Yuan, Yang Song-Qing, Yu Rong-Bin, Hong Cheng. Network failure model based on time series. Acta Physica Sinica, doi: 10.7498/aps.71.20212106
    [6] Zhao Hao, Feng Jin-Xia, Sun Jing-Ke, Li Yuan-Ji, Zhang Kuan-Shou. Entanglement robustness of continuous variable Einstein-Podolsky-Rosen-entangled state distributed over optical fiber channel. Acta Physica Sinica, doi: 10.7498/aps.71.20212380
    [7] Zhou Pai, Li Xia-Xia, Xing Xue-Yan, Chen Yu-Hui, Zhang Xiang-Dong. Quantum memory and manipulation based on erbium doped crystals. Acta Physica Sinica, doi: 10.7498/aps.71.20211803
    [8] Zhang Zheng-Yuan, Zhang Tian-Yi, Liu Zong-Kai, Ding Dong-Sheng, Shi Bao-Sen. Research progress of Rydberg many-body interaction. Acta Physica Sinica, doi: 10.7498/aps.69.20200649
    [9] Hou Lü-Lin, Lao Song-Yang, Xiao Yan-Dong, Bai Liang. Recent progress in controllability of complex network. Acta Physica Sinica, doi: 10.7498/aps.64.188901
    [10] Chen Shi-Ming, Lü Hui, Xu Qing-Gang, Xu Yun-Fei, Lai Qiang. The model of interdependent network based on positive/negativecorrelation of the degree and its robustness study. Acta Physica Sinica, doi: 10.7498/aps.64.048902
    [11] Chen Shi-Ming, Zou Xiao-Qun, Lü Hui, Xu Qing-Gang. Research on robustness of interdependent network for suppressing cascading failure. Acta Physica Sinica, doi: 10.7498/aps.63.028902
    [12] Gao Chao, Bi Qin-Sheng, Zhang Zheng-Di. The oscillation and bifurcation of a switching system composed of jump circuits. Acta Physica Sinica, doi: 10.7498/aps.62.020504
    [13] Zhou Wu-Jie, Yu Mei, Yu Si-Min, Jiang Gang-Yi, Ge Ding-Fei. A zero-watermarking algorithm of stereoscopic image based on hyperchaotic system. Acta Physica Sinica, doi: 10.7498/aps.61.080701
    [14] Zhao Long. Robust inertial terrain aided navigation algorithm. Acta Physica Sinica, doi: 10.7498/aps.61.104301
    [15] Miao Zhi-Qiang, Wang Yao-Nan. Robust adaptive radial wavelet neural network control for chaotic systems using backstepping design. Acta Physica Sinica, doi: 10.7498/aps.61.030503
    [16] Wang Jiao-Jiao, Yan Hua, Wei Ping. Anticipating projective response in coupled dynamical systems. Acta Physica Sinica, doi: 10.7498/aps.59.7635
    [17] Zeng Gao-Rong, Qiu Zheng-Ding. Evaluation model for robustness of digital watermarking. Acta Physica Sinica, doi: 10.7498/aps.59.5870
    [18] Clock division with optical injection semiconductor laser. Acta Physica Sinica, doi: 10.7498/aps.56.6982
    [19] Liu Fu-Cai, Wang Juan, Shi Miao, Gao Xiu-Wei. Nonlinear continuous predictive variable structure control and synchronization of chaotic systems. Acta Physica Sinica, doi: 10.7498/aps.51.2707
    [20] WU WEI-GEN, GU TIAN-XIANG. NONLINEAR FEEDBACK FOLLOWING CONTROL OF CHAOTIC SYSTEMS. Acta Physica Sinica, doi: 10.7498/aps.49.1922
Metrics
  • Abstract views:  39
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  10 May 2025

/

返回文章
返回
Baidu
map