Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chaotic characteristics analysis and prediction for short-term wind speed time series

Tian Zhong-Da Li Shu-Jiang Wang Yan-Hong Gao Xian-Wen

Citation:

Chaotic characteristics analysis and prediction for short-term wind speed time series

Tian Zhong-Da, Li Shu-Jiang, Wang Yan-Hong, Gao Xian-Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A short-term wind speed time series prediction is studied. First, 0-1 test method for chaos is used to identify the short-term wind speed time series that has chaotic characteristics. Through phase space reconstruction, the delay time is determined by using C-C algorithm; and the embedding dimension is determined by using G-P algorithm. Then a least square support vector machine with parameters online modified is proposed, so that an improved particle swarm optimization algorithm may be used for the prediction of parameters optimization. Simulation experiment shows that the present method for its prediction accuracy, prediction error, and prediction effect is better than other prediction methods. Thus the proposed prediction method is effective, and feasible.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61034005).
    [1]

    Xiu C B, Liu X T, Zhang X, Yu T T 2013 Power System Protection and Control 41 14 (in Chinese) [修春波, 刘新婷, 张欣, 于婷婷 2013 电力系统保护与控制 41 14]

    [2]

    Yang X Y, Sun B J, Zhang X F, Li L X 2012 Proc. the CSEE 32 35 (in Chinese) [杨锡运, 孙宝君, 张新房, 李利霞 2012 中国电机工程学报 32 35]

    [3]

    Ma L, Benoudjit N 2011 Appl. Energ. 88 2463

    [4]

    Ma L, Luan S Y, Jiang C W, Liu H L, Zhang Y 2009 Renew. Sustain. Energy Rev. 13 915

    [5]

    Pelikán E, Eben K, Resler J, Juru P, Krc P, Brabec M, Brabec T, Musilek P 2010 9th Conference on Environment and Electrical Engineering (Piscataway, NJ: IEEE) p45

    [6]

    Cuo L, Zhang Y X, Wang Q C 2013 J. Climate 26 85

    [7]

    Erdem E, Shi J 2011 Appl. Energ. 88 1405

    [8]

    Jiang J L, Lin G M 2008 Control Theory Appl. 25 374 (in Chinese) [蒋金良, 林广明 2008 控制理论与应用 25 374]

    [9]

    Liu H, Tian H Q, Li Y F 2012 Appl. Energ. 98 415

    [10]

    Li H J, Liu Y N, Wei Z N, Li X L, Cheung K W, Sun Y H, Sun G Q 2013 Electr. Power Autom. Equip. 33 28 (in Chinese) [李彗杰, 刘亚男, 卫志农, 李晓露, Kwok W Cheung, 孙永辉, 孙国强 2013 电力自动化设备 33 28]

    [11]

    Wang Y, Wu D L, Guo C X, Wu Q H, Qian W Z, Yang J 2010 IEEE PES General Meeting (Piscataway, NJ: IEEE) p1

    [12]

    Li X, Wang X, Zheng Y H, Li L X, Zhou L D, Sheng X K 2014 International Conference on Renewable Energy and Environmental Technology (Zurich-Durnten: Trans Tech) p1825

    [13]

    Zeng J, Zhang H 2011 Acta Energiae Solaris Sin. 32 296 (in Chinese) [曾杰, 张华 2011 太阳能学报 32 296]

    [14]

    Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, Kallos G 2008 J. Wind Eng. Ind. Aerodyn. 96 2348

    [15]

    Liu J B, Ding T 2012 Acta Energiae Solaris Sin. 33 1131 (in Chinese) [刘进宝, 丁涛 2012 太阳能学报 33 1131]

    [16]

    Fourati F, Chtourou M 2007 Simul. Model. Pract. Theory 15 1016

    [17]

    Xiao H F, Ding T 2011 Proceedings of the 2011 International Conference on Informatics, Cybernetics,Computer Engineering (Heidelberg: Springer) p479

    [18]

    Soman S S, Zareipour H, Malik O, Mandal P 2010 North American Power Symposium 2010 (Piscataway, NJ: IEEE) p1

    [19]

    Sheng Z 2012 Acta Phys. Sin. 61 219401 (in Chinese) [盛峥 2012 61 219401]

    [20]

    Tahat A, Marti J, Khwaldeh A, Tahat K 2014 Chin. Phys. 23 046101

    [21]

    Li H C, Zhao J S 2005 Chin. Phys. Lett. 22 2776

    [22]

    Tang Z J, Ren F, Peng T, Wang W B 2014 Acta Phys. Sin. 63 050505 (in Chinese) [唐舟进, 任峰, 彭涛, 王文博 2014 63 050505]

    [23]

    Wu X D, Wang Y N, Liu W T, Zhu Z Y 2011 Chin. Phys. 20 069201

    [24]

    Gottald G A, Melbourne I 2009 SIAM J. Appl. Dyn. Syst. 8 129

    [25]

    Gottald G A, Melbourne I 2009 Nonlinearity 22 1367

    [26]

    Kim H S, Eykholt R, Salas J D 1999 Physica D 127 48

    [27]

    Zhang H B, Sun X D, He Y L 2014 Acta Phys. Sin. 63 040505 (in Chinese) [张洪宾, 孙小端, 贺玉龙 2014 63 040505]

    [28]

    Grassberger P, Procaccia I 1983 Physica D 9 189

    [29]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [30]

    Suykens J A K, Vandevalle J 1999 Neural Process. Lett. 9 293

    [31]

    Kennedy J, Eberhart R 1995 Proceedings of the 1995 IEEE International Conference on Neural Networks (Piscataway, NJ: IEEE) p1942

    [32]

    Regis R G 2014 J. Comput. Sci. 5 12

    [33]

    Dong Z S, Zhang X Y, Zeng J C 2013 Trans. Can. Soc. Mech. Eng. 37 1189

    [34]

    Letting L K, Munda J L, Hamam Y 2012 Solar Energ. 86 1689

  • [1]

    Xiu C B, Liu X T, Zhang X, Yu T T 2013 Power System Protection and Control 41 14 (in Chinese) [修春波, 刘新婷, 张欣, 于婷婷 2013 电力系统保护与控制 41 14]

    [2]

    Yang X Y, Sun B J, Zhang X F, Li L X 2012 Proc. the CSEE 32 35 (in Chinese) [杨锡运, 孙宝君, 张新房, 李利霞 2012 中国电机工程学报 32 35]

    [3]

    Ma L, Benoudjit N 2011 Appl. Energ. 88 2463

    [4]

    Ma L, Luan S Y, Jiang C W, Liu H L, Zhang Y 2009 Renew. Sustain. Energy Rev. 13 915

    [5]

    Pelikán E, Eben K, Resler J, Juru P, Krc P, Brabec M, Brabec T, Musilek P 2010 9th Conference on Environment and Electrical Engineering (Piscataway, NJ: IEEE) p45

    [6]

    Cuo L, Zhang Y X, Wang Q C 2013 J. Climate 26 85

    [7]

    Erdem E, Shi J 2011 Appl. Energ. 88 1405

    [8]

    Jiang J L, Lin G M 2008 Control Theory Appl. 25 374 (in Chinese) [蒋金良, 林广明 2008 控制理论与应用 25 374]

    [9]

    Liu H, Tian H Q, Li Y F 2012 Appl. Energ. 98 415

    [10]

    Li H J, Liu Y N, Wei Z N, Li X L, Cheung K W, Sun Y H, Sun G Q 2013 Electr. Power Autom. Equip. 33 28 (in Chinese) [李彗杰, 刘亚男, 卫志农, 李晓露, Kwok W Cheung, 孙永辉, 孙国强 2013 电力自动化设备 33 28]

    [11]

    Wang Y, Wu D L, Guo C X, Wu Q H, Qian W Z, Yang J 2010 IEEE PES General Meeting (Piscataway, NJ: IEEE) p1

    [12]

    Li X, Wang X, Zheng Y H, Li L X, Zhou L D, Sheng X K 2014 International Conference on Renewable Energy and Environmental Technology (Zurich-Durnten: Trans Tech) p1825

    [13]

    Zeng J, Zhang H 2011 Acta Energiae Solaris Sin. 32 296 (in Chinese) [曾杰, 张华 2011 太阳能学报 32 296]

    [14]

    Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, Kallos G 2008 J. Wind Eng. Ind. Aerodyn. 96 2348

    [15]

    Liu J B, Ding T 2012 Acta Energiae Solaris Sin. 33 1131 (in Chinese) [刘进宝, 丁涛 2012 太阳能学报 33 1131]

    [16]

    Fourati F, Chtourou M 2007 Simul. Model. Pract. Theory 15 1016

    [17]

    Xiao H F, Ding T 2011 Proceedings of the 2011 International Conference on Informatics, Cybernetics,Computer Engineering (Heidelberg: Springer) p479

    [18]

    Soman S S, Zareipour H, Malik O, Mandal P 2010 North American Power Symposium 2010 (Piscataway, NJ: IEEE) p1

    [19]

    Sheng Z 2012 Acta Phys. Sin. 61 219401 (in Chinese) [盛峥 2012 61 219401]

    [20]

    Tahat A, Marti J, Khwaldeh A, Tahat K 2014 Chin. Phys. 23 046101

    [21]

    Li H C, Zhao J S 2005 Chin. Phys. Lett. 22 2776

    [22]

    Tang Z J, Ren F, Peng T, Wang W B 2014 Acta Phys. Sin. 63 050505 (in Chinese) [唐舟进, 任峰, 彭涛, 王文博 2014 63 050505]

    [23]

    Wu X D, Wang Y N, Liu W T, Zhu Z Y 2011 Chin. Phys. 20 069201

    [24]

    Gottald G A, Melbourne I 2009 SIAM J. Appl. Dyn. Syst. 8 129

    [25]

    Gottald G A, Melbourne I 2009 Nonlinearity 22 1367

    [26]

    Kim H S, Eykholt R, Salas J D 1999 Physica D 127 48

    [27]

    Zhang H B, Sun X D, He Y L 2014 Acta Phys. Sin. 63 040505 (in Chinese) [张洪宾, 孙小端, 贺玉龙 2014 63 040505]

    [28]

    Grassberger P, Procaccia I 1983 Physica D 9 189

    [29]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [30]

    Suykens J A K, Vandevalle J 1999 Neural Process. Lett. 9 293

    [31]

    Kennedy J, Eberhart R 1995 Proceedings of the 1995 IEEE International Conference on Neural Networks (Piscataway, NJ: IEEE) p1942

    [32]

    Regis R G 2014 J. Comput. Sci. 5 12

    [33]

    Dong Z S, Zhang X Y, Zeng J C 2013 Trans. Can. Soc. Mech. Eng. 37 1189

    [34]

    Letting L K, Munda J L, Hamam Y 2012 Solar Energ. 86 1689

  • [1] Shen Li-Hua, Chen Ji-Hong, Zeng Zhi-Gang, Jin Jian. Chaotic time series prediction based on robust extreme learning machine. Acta Physica Sinica, 2018, 67(3): 030501. doi: 10.7498/aps.67.20171887
    [2] Li Jun, Li Da-Chao. Wind power time series prediction using optimized kernel extreme learning machine method. Acta Physica Sinica, 2016, 65(13): 130501. doi: 10.7498/aps.65.130501
    [3] Li Rui-Guo, Zhang Hong-Li, Fan Wen-Hui, Wang Ya. Hermite orthogonal basis neural network based on improved teaching-learning-based optimization algorithm for chaotic time series prediction. Acta Physica Sinica, 2015, 64(20): 200506. doi: 10.7498/aps.64.200506
    [4] Wang Xin-Ying, Han Min. Multivariate chaotic time series prediction using multiple kernel extreme learning machine. Acta Physica Sinica, 2015, 64(7): 070504. doi: 10.7498/aps.64.070504
    [5] Zhang Yu-Mei, Wu Xiao-Jun, Bai Shu-Lin. Chaotic characteristic analysis for traffic flow series and DFPSOVF prediction model. Acta Physica Sinica, 2013, 62(19): 190509. doi: 10.7498/aps.62.190509
    [6] Zhang Wen-Zhuan, Long Wen, Jiao Jian-Jun. Parameter determination based on composite evolutionary algorithm for reconstructing phase-space in chaos time series. Acta Physica Sinica, 2012, 61(22): 220506. doi: 10.7498/aps.61.220506
    [7] Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng. Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent. Acta Physica Sinica, 2012, 61(6): 060503. doi: 10.7498/aps.61.060503
    [8] Li Jun, Zhang You-Peng. Single-step and multiple-step prediction of chaotic time series using Gaussian process model. Acta Physica Sinica, 2011, 60(7): 070513. doi: 10.7498/aps.60.070513
    [9] Li He, Yang Zhou, Zhang Yi-Min, Wen Bang-Chun. Methodology of estimating the embedding dimension in chaos time series based on the prediction performance of radial basis function neural networks. Acta Physica Sinica, 2011, 60(7): 070512. doi: 10.7498/aps.60.070512
    [10] Zhang Chun-Tao, Ma Qian-Li, Peng Hong. Chaotic time series prediction based on information entropy optimized parameters of phase space reconstruction. Acta Physica Sinica, 2010, 59(11): 7623-7629. doi: 10.7498/aps.59.7623
    [11] Dong Zhao, Li Xiang. The study of network motifs induced from discrete time series. Acta Physica Sinica, 2010, 59(3): 1600-1607. doi: 10.7498/aps.59.1600
    [12] Xiu Chun-Bo, Xu Meng. Multi-step prediction method for time series based on chaotic operator network. Acta Physica Sinica, 2010, 59(11): 7650-7656. doi: 10.7498/aps.59.7650
    [13] Ma Qian-Li, Zheng Qi-Lun, Peng Hong, Qin Jiang-Wei. Chaotic time series prediction based on fuzzy boundary modular neural networks. Acta Physica Sinica, 2009, 58(3): 1410-1419. doi: 10.7498/aps.58.1410
    [14] Yang Yong-Feng, Ren Xing-Min, Qin Wei-Yang, Wu Ya-Feng, Zhi Xi-Zhe. Prediction of chaotic time series based on EMD method. Acta Physica Sinica, 2008, 57(10): 6139-6144. doi: 10.7498/aps.57.6139
    [15] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [16] Zhang Jun-Feng, Hu Shou-Song. Chaotic time series prediction based on RBF neural networks with a new clustering algorithm. Acta Physica Sinica, 2007, 56(2): 713-719. doi: 10.7498/aps.56.713
    [17] He Tao, Zhou Zheng-Ou. Prediction of chaotic time series based on fractal self-affinity. Acta Physica Sinica, 2007, 56(2): 693-700. doi: 10.7498/aps.56.693
    [18] Yan Hua, Wei Ping, Xiao Xian-Ci. An adaptive approach based on Bernstein polynomial to predict chaotic time series. Acta Physica Sinica, 2007, 56(9): 5111-5118. doi: 10.7498/aps.56.5111
    [19] Ye Mei-Ying, Wang Xiao-Dong, Zhang Hao-Ran. Chaotic time series forecasting using online least squares support vector machine regression. Acta Physica Sinica, 2005, 54(6): 2568-2573. doi: 10.7498/aps.54.2568
    [20] Li Jun, Liu Jun-Hua. On the prediction of chaotic time series using a new generalized radial basis function neural networks. Acta Physica Sinica, 2005, 54(10): 4569-4577. doi: 10.7498/aps.54.4569
Metrics
  • Abstract views:  8223
  • PDF Downloads:  937
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2014
  • Accepted Date:  15 August 2014
  • Published Online:  05 February 2015

/

返回文章
返回
Baidu
map