搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种全局同质化相依网络耦合模式

高彦丽 陈世明

引用本文:
Citation:

一种全局同质化相依网络耦合模式

高彦丽, 陈世明

A global homogenizing coupled pattern of interdependent networks

Gao Yan-Li, Chen Shi-Ming
PDF
导出引用
  • 相依网络的相依模式(耦合模式)是影响其鲁棒性的重要因素之一. 本文针对具有无标度特性的两个子网络提出一种全局同质化相依网络耦合模式. 该模式以子网络的总度分布均匀化为原则建立相依网络的相依边, 一方面压缩度分布宽度, 提高其对随机失效的抗毁性, 另一方面避开对度大节点(关键节点)的相依, 提高其对蓄意攻击的抗毁性. 论文将其与常见的节点一对一的同配、异配及随机相依模式以及一对多随机相依模式作了对比分析, 仿真研究其在随机失效和蓄意攻击下的鲁棒性能. 研究结果表明, 本文所提全局同质化相依网络耦合模式能大大提高无标度子网络所构成的相依网络抗级联失效能力. 本文研究成果能够为相依网络的安全设计等提供指导意义.
    Many infrastructure networks interact with and depend on each other to provide proper functionality. The interdependence between networks has catastrophic effects on their robustness. Events taking place in one system can propagate to any other coupled system. Recently, great efforts have been dedicated to the research on how the coupled pattern between two networks affects the robustness of interdependent networks. However, how to dynamically construct the links between two interdependent networks to obtain stronger robustness is rarely studied. To fill this gap, a global homogenizing coupled pattern between two scale-free networks is proposed in this paper. Making the final degrees of nodes distributed evenly is the principle for building the dependency links, which has the following two merits. First, the system robustness against random failure is enhanced by compressing the broadness of degree distribution. Second, the system invulnerability against targeted attack is improved by avoiding dependence on high-degree nodes. In order to better investigate its efficiency on improving the robustness of coupled networks against cascading failures, we adopt other four kinds of coupled patterns to make a comparative analysis, i.e., the assortative link (AL), the disassortative link (DL), the random link (RL) and global random link (GRL). We construct the BA-BA interdependent networks with the above 5 coupled patterns respectively. After applying targeted attacks and random failures to the networks, we use the ratio of giant component size after cascades to initial network size to measure the robustness of the coupled networks. It is numerically found that the interdependent network based on global homogenizing coupled pattern shows the strongest robustness under targeted attacks or random failures. The global homogenizing coupled pattern is more efficient to avoid the cascading propagation under targeted attack than random failure. Finally, the reasonable explanations for simulation results is given by a simply graph. This work is very helpful for designing the interdependent networks against cascading failures.
      通信作者: 陈世明, shmchen@ecjtu.jx.cn
    • 基金项目: 国家自然科学基金(批准号:61364017)和教育部人文社会科学研究规划基金(批准号:13YJAZH010)资助的课题.
      Corresponding author: Chen Shi-Ming, shmchen@ecjtu.jx.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61364017) and the Humanities and Social Science Project of Ministry of Education of China (Grant No. 13YJAZH010).
    [1]

    Wang W X, Lai Y C, Dieter A 2011 Chaos 21 033112

    [2]

    Chen S M, Pang S P, Zou X Q 2013 Chin. Phys. B 22 058901

    [3]

    Mirzasoleiman B, Babaei M, Jalili M, Safari M 2011 Phys. Rev. E 84 046114

    [4]

    Schfer M, Scholz J, Greiner M 2006 Phys. Rev. Lett. 96 108701

    [5]

    Wang J W 2012 Nonlinear Dyn. 70 1959

    [6]

    Yang R, Wang W X, Lai Y C, Chen G R 2009 Phys. Rev. E 79 026112

    [7]

    Buzna L, Peters K, Ammoser H, Khnert C, Helbing D 2007 Phys. Rev. E 75 056107

    [8]

    Nie T Y, Guo Z, Zhao K, Lu Z M 2015 Physica A 424 248

    [9]

    Zhao L, Park K, Lai Y C, Ye N 2005 Phys. Rev. E 72 025104

    [10]

    Moreira A A, Andrade Jr J S, Herrmann H J, Indekeu J O 2009 Phys. Rev. Lett. 102 018701

    [11]

    Wang J W, Rong L L 2009 Safety Sci. 47 1332

    [12]

    Rosato V, Issacharoff L, Tiriticco F, Meloni S, DePorcellinis S, Setola R 2008 Int. J. Crit. Infrastruct. 4 63

    [13]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [14]

    Vespignani A 2010 Nature 464 984

    [15]

    Wang J W, Rong L L 2009 Acta Phys. Sin. 58 3714 (in Chinese) [王建伟, 荣莉莉 2009 58 3714]

    [16]

    Buldyrev S V, Shere N W, Cwilich G A 2011 Phys. Rev. E 83 016112

    [17]

    Parshani R, Rozenblat C, Ietri D, Ducruet C, Havlin S 2010 Europhys. Lett. 92 68002

    [18]

    Zhou D, Stanley H E, D'Agostino G, Scala A 2012 Phys. Rev. E 86 066103

    [19]

    Wang J W, Chen J, Qian J F 2014 Physica A 393 535

    [20]

    Cheng Z S, Cao J D 2015 Physica A 430 193

    [21]

    Chen S M, Zou X Q, L H, Xu Q G 2014 Acta Phys. Sin. 63 028902 (in Chinese) [陈世明, 邹小群, 吕辉, 徐青刚 2014 63 028902]

    [22]

    Wang J W, Yun L, Qiao F Z 2015 Physica A 430 242

    [23]

    Chen Z, Du W B, Cao X B, Zhou X L 2015 Chaos, Solitons Fractals 80 7

    [24]

    Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 036116

    [25]

    Chen S M, L H, Xu Q G, Xu Y F, Lai Q 2015 Acta Phys. Sin. 64 048902 (in Chinese) [陈世明, 吕辉, 徐青刚, 许云飞, 赖强 2015 64 048902]

    [26]

    Wang J W, Jiang C, Qian J F 2013 Int. J. Mod. Phys. C 24 1350076

    [27]

    Wang J W 2013 Physica A 392 2257

    [28]

    Cao X B, Hong C, Du W B, Zhang J 2013 Chaos, Solitons Fractals 57 35

    [29]

    Huang W, Chow TWS 2010 Chaos 20 033123

    [30]

    Motter A E 2004 Phys. Rev. Lett. 93 098701

    [31]

    Barabsi A L, Albert R 1999 Science 286 509

  • [1]

    Wang W X, Lai Y C, Dieter A 2011 Chaos 21 033112

    [2]

    Chen S M, Pang S P, Zou X Q 2013 Chin. Phys. B 22 058901

    [3]

    Mirzasoleiman B, Babaei M, Jalili M, Safari M 2011 Phys. Rev. E 84 046114

    [4]

    Schfer M, Scholz J, Greiner M 2006 Phys. Rev. Lett. 96 108701

    [5]

    Wang J W 2012 Nonlinear Dyn. 70 1959

    [6]

    Yang R, Wang W X, Lai Y C, Chen G R 2009 Phys. Rev. E 79 026112

    [7]

    Buzna L, Peters K, Ammoser H, Khnert C, Helbing D 2007 Phys. Rev. E 75 056107

    [8]

    Nie T Y, Guo Z, Zhao K, Lu Z M 2015 Physica A 424 248

    [9]

    Zhao L, Park K, Lai Y C, Ye N 2005 Phys. Rev. E 72 025104

    [10]

    Moreira A A, Andrade Jr J S, Herrmann H J, Indekeu J O 2009 Phys. Rev. Lett. 102 018701

    [11]

    Wang J W, Rong L L 2009 Safety Sci. 47 1332

    [12]

    Rosato V, Issacharoff L, Tiriticco F, Meloni S, DePorcellinis S, Setola R 2008 Int. J. Crit. Infrastruct. 4 63

    [13]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [14]

    Vespignani A 2010 Nature 464 984

    [15]

    Wang J W, Rong L L 2009 Acta Phys. Sin. 58 3714 (in Chinese) [王建伟, 荣莉莉 2009 58 3714]

    [16]

    Buldyrev S V, Shere N W, Cwilich G A 2011 Phys. Rev. E 83 016112

    [17]

    Parshani R, Rozenblat C, Ietri D, Ducruet C, Havlin S 2010 Europhys. Lett. 92 68002

    [18]

    Zhou D, Stanley H E, D'Agostino G, Scala A 2012 Phys. Rev. E 86 066103

    [19]

    Wang J W, Chen J, Qian J F 2014 Physica A 393 535

    [20]

    Cheng Z S, Cao J D 2015 Physica A 430 193

    [21]

    Chen S M, Zou X Q, L H, Xu Q G 2014 Acta Phys. Sin. 63 028902 (in Chinese) [陈世明, 邹小群, 吕辉, 徐青刚 2014 63 028902]

    [22]

    Wang J W, Yun L, Qiao F Z 2015 Physica A 430 242

    [23]

    Chen Z, Du W B, Cao X B, Zhou X L 2015 Chaos, Solitons Fractals 80 7

    [24]

    Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 036116

    [25]

    Chen S M, L H, Xu Q G, Xu Y F, Lai Q 2015 Acta Phys. Sin. 64 048902 (in Chinese) [陈世明, 吕辉, 徐青刚, 许云飞, 赖强 2015 64 048902]

    [26]

    Wang J W, Jiang C, Qian J F 2013 Int. J. Mod. Phys. C 24 1350076

    [27]

    Wang J W 2013 Physica A 392 2257

    [28]

    Cao X B, Hong C, Du W B, Zhang J 2013 Chaos, Solitons Fractals 57 35

    [29]

    Huang W, Chow TWS 2010 Chaos 20 033123

    [30]

    Motter A E 2004 Phys. Rev. Lett. 93 098701

    [31]

    Barabsi A L, Albert R 1999 Science 286 509

  • [1] 高彦丽, 徐维南, 周杰, 陈世明. 二元双层耦合网络渗流行为分析.  , 2024, 73(16): 168901. doi: 10.7498/aps.73.20240454
    [2] 王建伟, 赵乃萱, 望楚佩, 向玲慧, 温廷新. 相互依赖网络上级联故障鲁棒性悖论研究.  , 2024, 73(21): 218901. doi: 10.7498/aps.73.20241002
    [3] 杨武华, 王彩琳, 张如亮, 张超, 苏乐. 高压IGBT雪崩鲁棒性的研究.  , 2023, 72(7): 078501. doi: 10.7498/aps.72.20222248
    [4] 严玉为, 蒋沅, 杨松青, 余荣斌, 洪成. 基于时间序列的网络失效模型.  , 2022, 71(8): 088901. doi: 10.7498/aps.71.20212106
    [5] 潘倩倩, 刘润然, 贾春晓. 具有弱依赖组的复杂网络上的级联失效.  , 2022, (): . doi: 10.7498/aps.71.20210850
    [6] 潘倩倩, 刘润然, 贾春晓. 具有弱依赖组的复杂网络上的级联失效.  , 2022, 71(11): 110505. doi: 10.7498/aps.70.20210850
    [7] 蒋文君, 刘润然, 范天龙, 刘霜霜, 吕琳媛. 多层网络级联失效的预防和恢复策略概述.  , 2020, 69(8): 088904. doi: 10.7498/aps.69.20192000
    [8] 韩伟涛, 伊鹏. 相依网络的条件依赖群逾渗.  , 2019, 68(7): 078902. doi: 10.7498/aps.68.20182258
    [9] 韩伟涛, 伊鹏, 马海龙, 张鹏, 田乐. 异质弱相依网络鲁棒性研究.  , 2019, 68(18): 186401. doi: 10.7498/aps.68.20190761
    [10] 吴佳键, 龚凯, 王聪, 王磊. 相依网络上基于相连边的择优恢复算法.  , 2018, 67(8): 088901. doi: 10.7498/aps.67.20172526
    [11] 侯绿林, 老松杨, 肖延东, 白亮. 复杂网络可控性研究现状综述.  , 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [12] 彭兴钊, 姚宏, 杜军, 王哲, 丁超. 负荷作用下相依网络中的级联故障.  , 2015, 64(4): 048901. doi: 10.7498/aps.64.048901
    [13] 陈世明, 吕辉, 徐青刚, 许云飞, 赖强. 基于度的正/负相关相依网络模型及其鲁棒性研究.  , 2015, 64(4): 048902. doi: 10.7498/aps.64.048902
    [14] 段东立, 战仁军. 基于相继故障信息的网络节点重要度演化机理分析.  , 2014, 63(6): 068902. doi: 10.7498/aps.63.068902
    [15] 欧阳博, 金心宇, 夏永祥, 蒋路茸, 吴端坡. 疾病传播与级联失效相互作用的研究:度不相关网络中疾病扩散条件的分析.  , 2014, 63(21): 218902. doi: 10.7498/aps.63.218902
    [16] 袁铭. 带有层级结构的复杂网络级联失效模型.  , 2014, 63(22): 220501. doi: 10.7498/aps.63.220501
    [17] 陈世明, 邹小群, 吕辉, 徐青刚. 面向级联失效的相依网络鲁棒性研究.  , 2014, 63(2): 028902. doi: 10.7498/aps.63.028902
    [18] 任卓明, 邵凤, 刘建国, 郭强, 汪秉宏. 基于度与集聚系数的网络节点重要性度量方法研究.  , 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [19] 缪志强, 王耀南. 基于径向小波神经网络的混沌系统鲁棒自适应反演控制.  , 2012, 61(3): 030503. doi: 10.7498/aps.61.030503
    [20] 曾高荣, 裘正定. 数字水印的鲁棒性评测模型.  , 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
计量
  • 文章访问数:  6304
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-22
  • 修回日期:  2016-04-11
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map