Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A global homogenizing coupled pattern of interdependent networks

Gao Yan-Li Chen Shi-Ming

Citation:

A global homogenizing coupled pattern of interdependent networks

Gao Yan-Li, Chen Shi-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Many infrastructure networks interact with and depend on each other to provide proper functionality. The interdependence between networks has catastrophic effects on their robustness. Events taking place in one system can propagate to any other coupled system. Recently, great efforts have been dedicated to the research on how the coupled pattern between two networks affects the robustness of interdependent networks. However, how to dynamically construct the links between two interdependent networks to obtain stronger robustness is rarely studied. To fill this gap, a global homogenizing coupled pattern between two scale-free networks is proposed in this paper. Making the final degrees of nodes distributed evenly is the principle for building the dependency links, which has the following two merits. First, the system robustness against random failure is enhanced by compressing the broadness of degree distribution. Second, the system invulnerability against targeted attack is improved by avoiding dependence on high-degree nodes. In order to better investigate its efficiency on improving the robustness of coupled networks against cascading failures, we adopt other four kinds of coupled patterns to make a comparative analysis, i.e., the assortative link (AL), the disassortative link (DL), the random link (RL) and global random link (GRL). We construct the BA-BA interdependent networks with the above 5 coupled patterns respectively. After applying targeted attacks and random failures to the networks, we use the ratio of giant component size after cascades to initial network size to measure the robustness of the coupled networks. It is numerically found that the interdependent network based on global homogenizing coupled pattern shows the strongest robustness under targeted attacks or random failures. The global homogenizing coupled pattern is more efficient to avoid the cascading propagation under targeted attack than random failure. Finally, the reasonable explanations for simulation results is given by a simply graph. This work is very helpful for designing the interdependent networks against cascading failures.
      Corresponding author: Chen Shi-Ming, shmchen@ecjtu.jx.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61364017) and the Humanities and Social Science Project of Ministry of Education of China (Grant No. 13YJAZH010).
    [1]

    Wang W X, Lai Y C, Dieter A 2011 Chaos 21 033112

    [2]

    Chen S M, Pang S P, Zou X Q 2013 Chin. Phys. B 22 058901

    [3]

    Mirzasoleiman B, Babaei M, Jalili M, Safari M 2011 Phys. Rev. E 84 046114

    [4]

    Schfer M, Scholz J, Greiner M 2006 Phys. Rev. Lett. 96 108701

    [5]

    Wang J W 2012 Nonlinear Dyn. 70 1959

    [6]

    Yang R, Wang W X, Lai Y C, Chen G R 2009 Phys. Rev. E 79 026112

    [7]

    Buzna L, Peters K, Ammoser H, Khnert C, Helbing D 2007 Phys. Rev. E 75 056107

    [8]

    Nie T Y, Guo Z, Zhao K, Lu Z M 2015 Physica A 424 248

    [9]

    Zhao L, Park K, Lai Y C, Ye N 2005 Phys. Rev. E 72 025104

    [10]

    Moreira A A, Andrade Jr J S, Herrmann H J, Indekeu J O 2009 Phys. Rev. Lett. 102 018701

    [11]

    Wang J W, Rong L L 2009 Safety Sci. 47 1332

    [12]

    Rosato V, Issacharoff L, Tiriticco F, Meloni S, DePorcellinis S, Setola R 2008 Int. J. Crit. Infrastruct. 4 63

    [13]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [14]

    Vespignani A 2010 Nature 464 984

    [15]

    Wang J W, Rong L L 2009 Acta Phys. Sin. 58 3714 (in Chinese) [王建伟, 荣莉莉 2009 58 3714]

    [16]

    Buldyrev S V, Shere N W, Cwilich G A 2011 Phys. Rev. E 83 016112

    [17]

    Parshani R, Rozenblat C, Ietri D, Ducruet C, Havlin S 2010 Europhys. Lett. 92 68002

    [18]

    Zhou D, Stanley H E, D'Agostino G, Scala A 2012 Phys. Rev. E 86 066103

    [19]

    Wang J W, Chen J, Qian J F 2014 Physica A 393 535

    [20]

    Cheng Z S, Cao J D 2015 Physica A 430 193

    [21]

    Chen S M, Zou X Q, L H, Xu Q G 2014 Acta Phys. Sin. 63 028902 (in Chinese) [陈世明, 邹小群, 吕辉, 徐青刚 2014 63 028902]

    [22]

    Wang J W, Yun L, Qiao F Z 2015 Physica A 430 242

    [23]

    Chen Z, Du W B, Cao X B, Zhou X L 2015 Chaos, Solitons Fractals 80 7

    [24]

    Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 036116

    [25]

    Chen S M, L H, Xu Q G, Xu Y F, Lai Q 2015 Acta Phys. Sin. 64 048902 (in Chinese) [陈世明, 吕辉, 徐青刚, 许云飞, 赖强 2015 64 048902]

    [26]

    Wang J W, Jiang C, Qian J F 2013 Int. J. Mod. Phys. C 24 1350076

    [27]

    Wang J W 2013 Physica A 392 2257

    [28]

    Cao X B, Hong C, Du W B, Zhang J 2013 Chaos, Solitons Fractals 57 35

    [29]

    Huang W, Chow TWS 2010 Chaos 20 033123

    [30]

    Motter A E 2004 Phys. Rev. Lett. 93 098701

    [31]

    Barabsi A L, Albert R 1999 Science 286 509

  • [1]

    Wang W X, Lai Y C, Dieter A 2011 Chaos 21 033112

    [2]

    Chen S M, Pang S P, Zou X Q 2013 Chin. Phys. B 22 058901

    [3]

    Mirzasoleiman B, Babaei M, Jalili M, Safari M 2011 Phys. Rev. E 84 046114

    [4]

    Schfer M, Scholz J, Greiner M 2006 Phys. Rev. Lett. 96 108701

    [5]

    Wang J W 2012 Nonlinear Dyn. 70 1959

    [6]

    Yang R, Wang W X, Lai Y C, Chen G R 2009 Phys. Rev. E 79 026112

    [7]

    Buzna L, Peters K, Ammoser H, Khnert C, Helbing D 2007 Phys. Rev. E 75 056107

    [8]

    Nie T Y, Guo Z, Zhao K, Lu Z M 2015 Physica A 424 248

    [9]

    Zhao L, Park K, Lai Y C, Ye N 2005 Phys. Rev. E 72 025104

    [10]

    Moreira A A, Andrade Jr J S, Herrmann H J, Indekeu J O 2009 Phys. Rev. Lett. 102 018701

    [11]

    Wang J W, Rong L L 2009 Safety Sci. 47 1332

    [12]

    Rosato V, Issacharoff L, Tiriticco F, Meloni S, DePorcellinis S, Setola R 2008 Int. J. Crit. Infrastruct. 4 63

    [13]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [14]

    Vespignani A 2010 Nature 464 984

    [15]

    Wang J W, Rong L L 2009 Acta Phys. Sin. 58 3714 (in Chinese) [王建伟, 荣莉莉 2009 58 3714]

    [16]

    Buldyrev S V, Shere N W, Cwilich G A 2011 Phys. Rev. E 83 016112

    [17]

    Parshani R, Rozenblat C, Ietri D, Ducruet C, Havlin S 2010 Europhys. Lett. 92 68002

    [18]

    Zhou D, Stanley H E, D'Agostino G, Scala A 2012 Phys. Rev. E 86 066103

    [19]

    Wang J W, Chen J, Qian J F 2014 Physica A 393 535

    [20]

    Cheng Z S, Cao J D 2015 Physica A 430 193

    [21]

    Chen S M, Zou X Q, L H, Xu Q G 2014 Acta Phys. Sin. 63 028902 (in Chinese) [陈世明, 邹小群, 吕辉, 徐青刚 2014 63 028902]

    [22]

    Wang J W, Yun L, Qiao F Z 2015 Physica A 430 242

    [23]

    Chen Z, Du W B, Cao X B, Zhou X L 2015 Chaos, Solitons Fractals 80 7

    [24]

    Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 036116

    [25]

    Chen S M, L H, Xu Q G, Xu Y F, Lai Q 2015 Acta Phys. Sin. 64 048902 (in Chinese) [陈世明, 吕辉, 徐青刚, 许云飞, 赖强 2015 64 048902]

    [26]

    Wang J W, Jiang C, Qian J F 2013 Int. J. Mod. Phys. C 24 1350076

    [27]

    Wang J W 2013 Physica A 392 2257

    [28]

    Cao X B, Hong C, Du W B, Zhang J 2013 Chaos, Solitons Fractals 57 35

    [29]

    Huang W, Chow TWS 2010 Chaos 20 033123

    [30]

    Motter A E 2004 Phys. Rev. Lett. 93 098701

    [31]

    Barabsi A L, Albert R 1999 Science 286 509

  • [1] Gao Yan-Li, Xu Wei-Nan, Zhou Jie, Chen Shi-Ming. Analysis of seepage behaviour in binary two-layer coupled networks. Acta Physica Sinica, 2024, 73(16): 168901. doi: 10.7498/aps.73.20240454
    [2] Wang Jian-Wei, Zhao Nai-Xuan, Wang Chu-Pei, Xiang Ling-Hui, Wen Ting-Xin. Robustness paradox of cascading dynamics in interdependent networks. Acta Physica Sinica, 2024, 73(21): 218901. doi: 10.7498/aps.73.20241002
    [3] Yang Wu-Hua, Wang Cai-Lin, Zhang Ru-Liang, Zhang Chao, Su Le. Study on avalanche ruggedness of high voltage IGBTs. Acta Physica Sinica, 2023, 72(7): 078501. doi: 10.7498/aps.72.20222248
    [4] Yan Yu-Wei, Jiang Yuan, Yang Song-Qing, Yu Rong-Bin, Hong Cheng. Network failure model based on time series. Acta Physica Sinica, 2022, 71(8): 088901. doi: 10.7498/aps.71.20212106
    [5] Cascading failures on complex networks with weak interdependency groups. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20210850
    [6] Pan Qian-Qian, Liu Run-Ran, Jia Chun-Xiao. Cascading failures on complex networks with weak interdependency groups. Acta Physica Sinica, 2022, 71(11): 110505. doi: 10.7498/aps.70.20210850
    [7] Jiang Wen-Jun, Liu Run-Ran, Fan Tian-Long, Liu Shuang-Shuang, Lü Lin-Yuan. Overview of precaution and recovery strategies for cascading failures in multilayer networks. Acta Physica Sinica, 2020, 69(8): 088904. doi: 10.7498/aps.69.20192000
    [8] Han Wei-tao, Yi Peng. Percolation of interdependent networks with conditional dependency clusters. Acta Physica Sinica, 2019, 68(7): 078902. doi: 10.7498/aps.68.20182258
    [9] Han Wei-Tao, Yi Peng, Ma Hai-Long, Zhang Peng, Tian Le. Robustness of interdependent networks withheterogeneous weak inter-layer links. Acta Physica Sinica, 2019, 68(18): 186401. doi: 10.7498/aps.68.20190761
    [10] Wu Jia-Jian, Gong Kai, Wang Cong, Wang Lei. Enhancing resilience of interdependent networks against cascading failures under preferential recovery strategies. Acta Physica Sinica, 2018, 67(8): 088901. doi: 10.7498/aps.67.20172526
    [11] Hou Lü-Lin, Lao Song-Yang, Xiao Yan-Dong, Bai Liang. Recent progress in controllability of complex network. Acta Physica Sinica, 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [12] Peng Xing-Zhao, Yao Hong, Du Jun, Wang Zhe, Ding Chao. Load-induced cascading failure in interdependent network. Acta Physica Sinica, 2015, 64(4): 048901. doi: 10.7498/aps.64.048901
    [13] Chen Shi-Ming, Lü Hui, Xu Qing-Gang, Xu Yun-Fei, Lai Qiang. The model of interdependent network based on positive/negativecorrelation of the degree and its robustness study. Acta Physica Sinica, 2015, 64(4): 048902. doi: 10.7498/aps.64.048902
    [14] Duan Dong-Li, Zhan Ren-Jun. Evolution mechanism of node importance based on the information about cascading failures in complex networks. Acta Physica Sinica, 2014, 63(6): 068902. doi: 10.7498/aps.63.068902
    [15] Ouyang Bo, Jin Xin-Yu, Xia Yong-Xiang, Jiang Lu-Rong, Wu Duan-Po. Dynamic interplay between epidemics and cascades:Epidemic outbreaks in uncorrelated networks. Acta Physica Sinica, 2014, 63(21): 218902. doi: 10.7498/aps.63.218902
    [16] Yuan Ming. A cascading failure model of complex network with hierarchy structure. Acta Physica Sinica, 2014, 63(22): 220501. doi: 10.7498/aps.63.220501
    [17] Chen Shi-Ming, Zou Xiao-Qun, Lü Hui, Xu Qing-Gang. Research on robustness of interdependent network for suppressing cascading failure. Acta Physica Sinica, 2014, 63(2): 028902. doi: 10.7498/aps.63.028902
    [18] Ren Zhuo-Ming, Shao Feng, Liu Jian-Guo, Guo Qiang, Wang Bing-Hong. Node importance measurement based on the degree and clustering coefficient information. Acta Physica Sinica, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [19] Miao Zhi-Qiang, Wang Yao-Nan. Robust adaptive radial wavelet neural network control for chaotic systems using backstepping design. Acta Physica Sinica, 2012, 61(3): 030503. doi: 10.7498/aps.61.030503
    [20] Zeng Gao-Rong, Qiu Zheng-Ding. Evaluation model for robustness of digital watermarking. Acta Physica Sinica, 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
Metrics
  • Abstract views:  6309
  • PDF Downloads:  284
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2016
  • Accepted Date:  11 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回
Baidu
map