-
The electromagnetic induced transparency (EIT) to atomic systems and its various applications have been extensively investigated, both theoretically and experimentally. In this paper, we study how to similarly verify these phenomena in the waveguide coupled to the transmission line resonators. By making use of real space quantum scattering theory, we calculate the transmission spectrum of the waveguide photons scattered by a single quarter-wavelength transmission line resonator. Our experimental results show that the resonant microwave transporting along the feedline is completely reflected by the resonator. This is similar to the situation of the light absorbed by the resonant atomic medium, and thus its transmission is significantly suppressed. Like the EIT phenomena in atomic gas, wherein the resonant absorption can be significantly suppressed by applying a strong pumping light to control the optical properties of medium, the transport properties of the resonant microwave can be investigated by coupling it into an auxiliary quarter-wavelength resonator in this paper. If the frequency of the auxiliary quarter-wavelength resonator is different from the resonant frequency, the calculated transmission spectrum shows that the coupling with auxiliary quarter-wavelength resonator induces the complete transmission of the resonant microwave. This is one of the features of the EIT-like effect, and can be simply explained as the frequency renormalization of the coupling resonators. Also, by adjusting the coupling strength between the resonators, the width of the microwave transmission spectrum window can be manipulated. Our experimental observations verify such an argument, but the phase shift mutation (another typical signs of the EIT effect) of the resonant microwave cannot be observed. In physics, this is because the interference between the transmitted microwave and the reflected micowave with different frequencies does not take place in the coupling region between the two resonators. It is expected that the effects with the complete EIT-like phenomena can be observed, in future, by fabricating the sample of two quarter-wavelength transmission line resonators with the same frequency, and thus the coupling between the two resonators can be controlled. -
Keywords:
- electromagnetic induced transparency /
- quarter wavelength microwave resonators /
- real space quantum transport theory /
- coupled-induced transport transparency
[1] Harris S E 1989 Phys. Rev. Lett. 62 1033Google Scholar
[2] Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593
[3] Guo Y H, Yan L S, Pan W, Luo B, Wen K H, Guo Z, Luo X G 2012 Opt. Express 20 24348Google Scholar
[4] Wang T L, Cao M Y, Zhang Y P, Zhang H Y 2019 Opt. Mater. Express 9 1562Google Scholar
[5] Di K, Xie C D, Zhang J 2011 Phys. Rev. Lett. 106 153602Google Scholar
[6] Zhao C Y, Zhang L, Zhang C M 2019 Pramana-J. Phys. 92 37Google Scholar
[7] Yan B, Gao F, Xu T, Ma H F, Zhong K S, Zheng Z X 2019 Mater. Res. Express. 6 115802Google Scholar
[8] 邸克 2013 博士学位论文 (太原: 山西大学)
Di K 2013 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[9] 詹孝贵 2013 博士学位论文 (武汉: 华中科技大学)
Zhan X G 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[10] Zheng C, Jiang X S, Hua S Y, Chang L, Li G Y, Fan H B, Xiao M 2012 Opt. Express 20 18319Google Scholar
[11] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰 2021 70 103201Google Scholar
Zhao J D, Zhang H, Yang W G, Zhao J H, Jing M Y, Zhang L J 2021 Acta Phys. Sin. 70 103201Google Scholar
[12] Zang T C, Chen Y Q, Ding Y Q, Sun Y, Wu Q Y 2020 AIP Adv. 10 115002Google Scholar
[13] Abdul J, Rashad R, Omar S, Muhammad A, Farooq A T 2021 Sci. Rep. 11 2983Google Scholar
[14] Li H J, Wang Y W, Wei L F, Zhou P J, Wei Q, Cao C H, Fang Y R, Yu Y, Wu P H 2013 Chin. Sci. Bull. 58 2413
[15] Liu X, Guo W, Wang Y, Dai M, Wei L F, Dober B, McKenney C M, Hilton G C, Hubmayr J, Austermann J E, Ullom J N, Gao J, Vissers M R 2017 Appl. Phys. Lett. 111 252601Google Scholar
[16] Gao J S 2008 Ph. D. Dissertation (Pasadena: California Institute of Technology)
[17] Gao H Y, Zhai D H, Gao J S, Wei L F 2020 J. Appl. Phys. 128 214302Google Scholar
[18] Srinivasan K, Painter O 2007 Nuture 450 862Google Scholar
[19] Choi Y S, Davano M, Lee K H 2007 Appd. Phys. Lett. 90 191108Google Scholar
[20] Shen J T, Fan S 2009 Phys. Rev. A. 79 023837Google Scholar
[21] Shen J T, Fan S 2005 Phys. Rev. Lett. 95 213001Google Scholar
[22] Yan C H, Wei L F, Jia W Z, Shen J T 2011 Phys. Rev. A 84 045801Google Scholar
[23] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar
[24] 梁浩, 李剑生, 郭云胜 2015 64 144101Google Scholar
Liang H, Li J S, Guo Y S 2015 Acta Phys. Sin. 64 144101Google Scholar
[25] Zheng H, Baranger H U 2013 Phys. Rev. Lett. 110 113601Google Scholar
-
图 5 两个插指耦合四分之一波长共面波导谐振腔对波导中行波微波的散射构型, 这里, 谐振腔的中心导体的一端经耦合电容与波导耦合, 另一端与地短路
Figure 5. Configuration of the travelling microwaves transporting along the waveguide scattered by the fingerly coupled quarter-wavelength coplanar waveguide resonators. Here, one end of the central conductor of the resonator is coupled to waveguide via a coupling capacitance, and the other end is directly grounded.
-
[1] Harris S E 1989 Phys. Rev. Lett. 62 1033Google Scholar
[2] Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593
[3] Guo Y H, Yan L S, Pan W, Luo B, Wen K H, Guo Z, Luo X G 2012 Opt. Express 20 24348Google Scholar
[4] Wang T L, Cao M Y, Zhang Y P, Zhang H Y 2019 Opt. Mater. Express 9 1562Google Scholar
[5] Di K, Xie C D, Zhang J 2011 Phys. Rev. Lett. 106 153602Google Scholar
[6] Zhao C Y, Zhang L, Zhang C M 2019 Pramana-J. Phys. 92 37Google Scholar
[7] Yan B, Gao F, Xu T, Ma H F, Zhong K S, Zheng Z X 2019 Mater. Res. Express. 6 115802Google Scholar
[8] 邸克 2013 博士学位论文 (太原: 山西大学)
Di K 2013 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[9] 詹孝贵 2013 博士学位论文 (武汉: 华中科技大学)
Zhan X G 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[10] Zheng C, Jiang X S, Hua S Y, Chang L, Li G Y, Fan H B, Xiao M 2012 Opt. Express 20 18319Google Scholar
[11] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰 2021 70 103201Google Scholar
Zhao J D, Zhang H, Yang W G, Zhao J H, Jing M Y, Zhang L J 2021 Acta Phys. Sin. 70 103201Google Scholar
[12] Zang T C, Chen Y Q, Ding Y Q, Sun Y, Wu Q Y 2020 AIP Adv. 10 115002Google Scholar
[13] Abdul J, Rashad R, Omar S, Muhammad A, Farooq A T 2021 Sci. Rep. 11 2983Google Scholar
[14] Li H J, Wang Y W, Wei L F, Zhou P J, Wei Q, Cao C H, Fang Y R, Yu Y, Wu P H 2013 Chin. Sci. Bull. 58 2413
[15] Liu X, Guo W, Wang Y, Dai M, Wei L F, Dober B, McKenney C M, Hilton G C, Hubmayr J, Austermann J E, Ullom J N, Gao J, Vissers M R 2017 Appl. Phys. Lett. 111 252601Google Scholar
[16] Gao J S 2008 Ph. D. Dissertation (Pasadena: California Institute of Technology)
[17] Gao H Y, Zhai D H, Gao J S, Wei L F 2020 J. Appl. Phys. 128 214302Google Scholar
[18] Srinivasan K, Painter O 2007 Nuture 450 862Google Scholar
[19] Choi Y S, Davano M, Lee K H 2007 Appd. Phys. Lett. 90 191108Google Scholar
[20] Shen J T, Fan S 2009 Phys. Rev. A. 79 023837Google Scholar
[21] Shen J T, Fan S 2005 Phys. Rev. Lett. 95 213001Google Scholar
[22] Yan C H, Wei L F, Jia W Z, Shen J T 2011 Phys. Rev. A 84 045801Google Scholar
[23] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar
[24] 梁浩, 李剑生, 郭云胜 2015 64 144101Google Scholar
Liang H, Li J S, Guo Y S 2015 Acta Phys. Sin. 64 144101Google Scholar
[25] Zheng H, Baranger H U 2013 Phys. Rev. Lett. 110 113601Google Scholar
Catalog
Metrics
- Abstract views: 5705
- PDF Downloads: 122
- Cited By: 0