Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A low-crosstalk and high-density multi-core few-mode fiber based on heterogeneous core and trench-assisted air-holes isolation

Wang Yan Han Ying Li Zeng-Hui Gong Lin Wang Lu-Yao Li Shu-Guang

Citation:

A low-crosstalk and high-density multi-core few-mode fiber based on heterogeneous core and trench-assisted air-holes isolation

Wang Yan, Han Ying, Li Zeng-Hui, Gong Lin, Wang Lu-Yao, Li Shu-Guang
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The capacity of a traditional optical communication system based on single-mode fiber has approached to its theoretical limit. Multi-core few-mode fibers provide an effective way to break through the bottleneck of existing transmission capacity. In this paper, a 5-LP-mode weakly-coupled low-crosstalk 7-core fiber is designed by using a combination of trench assistance and air hole isolation structure. The fiber with a standard outer diameter achieves low crosstalk between cores and modes. The inter-core crosstalk area and the effective mode area of the core are calculated by the finite element method. After design optimization, there are 5 stable transmission LP modes in the C+L band of optical communication in this fiber. The effective refractive index difference between LP21 mode and LP02 mode is the smallest and is greater than 1.1 × 10–3. The LP31 mode in the optical fiber has the largest inter-core crosstalk and the loss is lower than –50 dB/km. The fiber can achieve low crosstalk transmission between modes and cores at the same time. The mode areas of the 5 LP modes in the 7 cores are larger than 86 μm2, and the relative core multiplexing factor is 57.63 at a wavelength of 1550 nm. Therefore, this fiber can be used in a large-capacity high-speed fiber transmission system.
      Corresponding author: Han Ying, hanyingysu@163.com
    • Funds: Project supported by the National Key Research and Development Project, China (Grant No. 2019YFB2204001) and the Natural Science Foundation of Hebei Province, China (Grant Nos. F2019203549, F2019105108).
    [1]

    姜寿林 2019 博士学位论文(上海: 上海交通大学)

    Jiang S L 2019 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University)(in Chinese)

    [2]

    Li G F, Bai N, Zhao N B, Xia C 2014 Adv. Opt. Photonics 6 413Google Scholar

    [3]

    Sasaki Y, Takenaga K, Matsuo S, Aikawa K, Saitoh K 2017 Opt. Fiber Technol. 35 19Google Scholar

    [4]

    李巨浩, 葛大伟, 高宇洋, 贾骏驰, 于津怡, 何永琪, 陈章渊 2018 光通信研究 6 31Google Scholar

    LI J H, Ge D W, Gao Y Y, JIA J C, Yu J Y, He Y Q, Chen Z Y 2018 Study on Optical Communications 6 31Google Scholar

    [5]

    喻煌, 曲华昕, 彭楚宇, 贺志学 2019 中国信息通信大会论文集 中国 四川 成都, 11–30, 2019 p147

    Yu H, Qu H X, Peng C Y, He Z X 2019 CICC Chengdu, Sichuan, November-30, 2019, p147

    [6]

    Chralyvy A 2009 35th European Conference on Optical Communication Vienna, Austria, Sept. 20−24, 2009 p1

    [7]

    刘畅, 裴丽, 解宇恒, 王建帅, 郑晶晶, 宁提纲, 李晶 2020 中国激光 47 1106004Google Scholar

    Liu C, Pei L, Xie Y H, Wang J S, Zheng J J, Ning T G, Li J 2020 Chin J. Lasers 47 1106004Google Scholar

    [8]

    Ryf R, Randel S, Gnauck A H, Bolle C, Sierra A, Mumtaz S, Esmaeelpour M, Burrows E C, Essiambre R J, Winzer P J, Peckham D W, McCurdy A H, Lingle R 2012 J. Light. Technol. 30 521Google Scholar

    [9]

    Xia C, Amezcua-Correa R, Bai N, Antonio-Lopez E, Arrioja DM, Schulzgen A, Richardson M, Linares J, Montero C, Mateo E, Zhou X, Li G F 2012 IEEE Photon. Technol. Lett. 24 1914Google Scholar

    [10]

    Xie X, Tu J, Zhou X, Long K, Saitoh K 2017 Opt. Express 25 5119Google Scholar

    [11]

    涂佳静, 李朝晖 2021 光学学报 41 0106003Google Scholar

    Tu J J, Li Z H 2021 Acta Opt. Sin. 41 0106003Google Scholar

    [12]

    Saitoh K, Koshiba M, Takenaga K, Matsuo S 2012 Conference on Next-Generation Optical Communication - Components, Sub-Systems, and Systems, San Francisco, CA, JAN 24−26, 2012 p8284

    [13]

    Amma Y, Sasaki Y, Takenaga K, Matsuo S, Tu J, Saitoh K, Koshiba M, Morioka T, Miyamoto Y 2015 Optical Fiber Communications Conference and Exhibition (OFC) Los Angeles, CA, Mar. 22−26, 2015

    [14]

    温明妍 2015 硕士学位论文 (北京: 北京交通大学)

    Wen M Y 2015 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [15]

    Koshiba M, Saitoh K, Takenaga K, Matsuo S 2012 IEEE Photon. J. 4 1987Google Scholar

    [16]

    Koshiba M, Saitoh K, Takenaga K, Matsuo S 2011 Opt. Express 19 102Google Scholar

    [17]

    Takenaga K, Sasaki Y, Guan N, Matsuo S, Kasahara M, Saitoh K, Koshiba M 2012 IEEE Photon. Technol. Lett. 24 1941Google Scholar

    [18]

    Kumar D, Ranjan R 2018 Opt. Fiber Technol. 41 95Google Scholar

    [19]

    Fleming J W 1984 Appl. Opt. 23 4486Google Scholar

    [20]

    刘俊彦 2015 硕士学位论文 (北京: 北京邮电大学)

    Liu J Y 2015 M. S. Thesis (Beijing: Beijing Youdian University) (in Chinese)

    [21]

    Matsuo S, Sasaki Y, Akamatsu T, Ishida I, Takenaga K, Okuyama K, Saitoh K, Kosihba M 2012 Opt. Express 20 28398Google Scholar

    [22]

    苑立波 2019 激光与光电子学进展 56 170612Google Scholar

    Yuan L B 2019 Laser. Opt. Pro. 56 170612Google Scholar

    [23]

    Marcuse D 1982 Appl. Opt. 21 4208Google Scholar

    [24]

    Salsi M, Koebele C, Sperti D, Tran P, Mardoyan H, Brindel P, Bigo S, Boutin A, Verluise F, Sillard P, Bigot-Astruc M, Provost L, Charlet G 2012 J. Lightwave Technol. 30 618Google Scholar

    [25]

    Li Z H, Wang L Y, Wang Y, Li S G, Meng X J, Guo Y, Wang G R, Zhang H, Cheng T L, Xu W W, Qin Y, Zhou H 2021 Opt. Express 29 26418Google Scholar

    [26]

    K Mukasa, K Imamura, R Sugizaki 2012 Opto-Electronics and Communications Conference Busan, Korea, July 2−6, 2012 p473

    [27]

    Jiang S L, Ma L, Velazquez M N, He Z Y, Sahu J K 2019 Opt. Fiber Technol. 50 55Google Scholar

    [28]

    Xie Y H, Pei L, Zheng J J, Zhao Q, Ning T G, Li J 2020 Opt. Commun. 474 126155Google Scholar

  • 图 1  光纤端面图及其折射率分布 (a) 七芯五模光纤的截面图; (b) 相邻纤芯间的折射率分布

    Figure 1.  Schematic cross section and its refractive index profile: (a) Schematic cross section of seven-core five-mode fiber; (b) refractive index profile between adjacent cores.

    图 2  中心纤芯前5个模式在C+L波段的串扰变化情况

    Figure 2.  The crosstalk changes of the first 5 modes of the central core in the C+L band.

    图 3  随微结构变化中心纤芯LP31串扰变化情况

    Figure 3.  Changes in LP31 inter-core crosstalk with microstructure changes.

    图 4  LP31模芯间串扰与弯曲半径R的变化关系

    Figure 4.  The relationship between LP31 inter-core crosstalk and bending radius R.

    图 5  不同纤芯中各个模式折射率随波长的变化关系  (a) 纤芯1; (b) 纤芯2; (c)纤芯3

    Figure 5.  The relationship between the refractive index of each mode in different cores and the wavelength: (a) Core 1; (b) Core 2; (c) Core 3.

    图 6  3种纤芯中LP02与LP21模的有效折射率差

    Figure 6.  The refractive index difference between LP02 and LP21 modes in the three cores.

    图 7  各LP模式在C+L波段的有效模面积变化情况 (a) 纤芯1; (b) 纤芯2; (c) 纤芯3

    Figure 7.  Effective mode area changes of each LP mode in the C+L band: (a) Core 1; (b) Core 2; (c) Core 3.

    图 8  沟槽宽度c的变化对LP31芯间串扰的影响

    Figure 8.  The influence of the change of trench width c on the inter-core crosstalk of LP31 mode.

    图 9  内包层厚度b的变化对芯间串扰的影响

    Figure 9.  The influence of the change of the inner cladding thickness b on the inter-core crosstalk.

    图 10  气孔半径r变化对于LP31模式的芯间串扰影响

    Figure 10.  The influence of the change of the air hole radius r on the inter-core crosstalk of the LP31.

    表 1  光纤的初始参数

    Table 1.  The initial parameters of the optical fiber

    a/μmb/μmc/μmΔ1/%Δ2/%Δ3/%r/μmΛ/μmΔt/%
    7.5131.451.351.253.632.5–0.6
    DownLoad: CSV

    表 2  优化后的光纤参数

    Table 2.  The optimized parameters of the optical fiber.

    a/μmb/μmc/μmΔ1/%Δ2/%Δ3/%r/μmΔt/%
    7.51.52.51.451.351.253.7–0.6
    DownLoad: CSV

    表 3  与已发表的多芯光纤串扰性能对比

    Table 3.  Crosstalk characteristics comparison with multicore fibers published.

    光纤纤芯个数模式数量光纤结构芯间串扰
    /(dB·km–1)
    光纤直
    径/μm
    文献[9]73空气孔–32192
    文献[26]72沟槽–57243
    文献[27]61沟槽–50125
    文献[28]74空气沟槽–52200
    本文
    设计
    75空气孔+
    沟槽
    –50125
    DownLoad: CSV
    Baidu
  • [1]

    姜寿林 2019 博士学位论文(上海: 上海交通大学)

    Jiang S L 2019 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University)(in Chinese)

    [2]

    Li G F, Bai N, Zhao N B, Xia C 2014 Adv. Opt. Photonics 6 413Google Scholar

    [3]

    Sasaki Y, Takenaga K, Matsuo S, Aikawa K, Saitoh K 2017 Opt. Fiber Technol. 35 19Google Scholar

    [4]

    李巨浩, 葛大伟, 高宇洋, 贾骏驰, 于津怡, 何永琪, 陈章渊 2018 光通信研究 6 31Google Scholar

    LI J H, Ge D W, Gao Y Y, JIA J C, Yu J Y, He Y Q, Chen Z Y 2018 Study on Optical Communications 6 31Google Scholar

    [5]

    喻煌, 曲华昕, 彭楚宇, 贺志学 2019 中国信息通信大会论文集 中国 四川 成都, 11–30, 2019 p147

    Yu H, Qu H X, Peng C Y, He Z X 2019 CICC Chengdu, Sichuan, November-30, 2019, p147

    [6]

    Chralyvy A 2009 35th European Conference on Optical Communication Vienna, Austria, Sept. 20−24, 2009 p1

    [7]

    刘畅, 裴丽, 解宇恒, 王建帅, 郑晶晶, 宁提纲, 李晶 2020 中国激光 47 1106004Google Scholar

    Liu C, Pei L, Xie Y H, Wang J S, Zheng J J, Ning T G, Li J 2020 Chin J. Lasers 47 1106004Google Scholar

    [8]

    Ryf R, Randel S, Gnauck A H, Bolle C, Sierra A, Mumtaz S, Esmaeelpour M, Burrows E C, Essiambre R J, Winzer P J, Peckham D W, McCurdy A H, Lingle R 2012 J. Light. Technol. 30 521Google Scholar

    [9]

    Xia C, Amezcua-Correa R, Bai N, Antonio-Lopez E, Arrioja DM, Schulzgen A, Richardson M, Linares J, Montero C, Mateo E, Zhou X, Li G F 2012 IEEE Photon. Technol. Lett. 24 1914Google Scholar

    [10]

    Xie X, Tu J, Zhou X, Long K, Saitoh K 2017 Opt. Express 25 5119Google Scholar

    [11]

    涂佳静, 李朝晖 2021 光学学报 41 0106003Google Scholar

    Tu J J, Li Z H 2021 Acta Opt. Sin. 41 0106003Google Scholar

    [12]

    Saitoh K, Koshiba M, Takenaga K, Matsuo S 2012 Conference on Next-Generation Optical Communication - Components, Sub-Systems, and Systems, San Francisco, CA, JAN 24−26, 2012 p8284

    [13]

    Amma Y, Sasaki Y, Takenaga K, Matsuo S, Tu J, Saitoh K, Koshiba M, Morioka T, Miyamoto Y 2015 Optical Fiber Communications Conference and Exhibition (OFC) Los Angeles, CA, Mar. 22−26, 2015

    [14]

    温明妍 2015 硕士学位论文 (北京: 北京交通大学)

    Wen M Y 2015 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [15]

    Koshiba M, Saitoh K, Takenaga K, Matsuo S 2012 IEEE Photon. J. 4 1987Google Scholar

    [16]

    Koshiba M, Saitoh K, Takenaga K, Matsuo S 2011 Opt. Express 19 102Google Scholar

    [17]

    Takenaga K, Sasaki Y, Guan N, Matsuo S, Kasahara M, Saitoh K, Koshiba M 2012 IEEE Photon. Technol. Lett. 24 1941Google Scholar

    [18]

    Kumar D, Ranjan R 2018 Opt. Fiber Technol. 41 95Google Scholar

    [19]

    Fleming J W 1984 Appl. Opt. 23 4486Google Scholar

    [20]

    刘俊彦 2015 硕士学位论文 (北京: 北京邮电大学)

    Liu J Y 2015 M. S. Thesis (Beijing: Beijing Youdian University) (in Chinese)

    [21]

    Matsuo S, Sasaki Y, Akamatsu T, Ishida I, Takenaga K, Okuyama K, Saitoh K, Kosihba M 2012 Opt. Express 20 28398Google Scholar

    [22]

    苑立波 2019 激光与光电子学进展 56 170612Google Scholar

    Yuan L B 2019 Laser. Opt. Pro. 56 170612Google Scholar

    [23]

    Marcuse D 1982 Appl. Opt. 21 4208Google Scholar

    [24]

    Salsi M, Koebele C, Sperti D, Tran P, Mardoyan H, Brindel P, Bigo S, Boutin A, Verluise F, Sillard P, Bigot-Astruc M, Provost L, Charlet G 2012 J. Lightwave Technol. 30 618Google Scholar

    [25]

    Li Z H, Wang L Y, Wang Y, Li S G, Meng X J, Guo Y, Wang G R, Zhang H, Cheng T L, Xu W W, Qin Y, Zhou H 2021 Opt. Express 29 26418Google Scholar

    [26]

    K Mukasa, K Imamura, R Sugizaki 2012 Opto-Electronics and Communications Conference Busan, Korea, July 2−6, 2012 p473

    [27]

    Jiang S L, Ma L, Velazquez M N, He Z Y, Sahu J K 2019 Opt. Fiber Technol. 50 55Google Scholar

    [28]

    Xie Y H, Pei L, Zheng J J, Zhao Q, Ning T G, Li J 2020 Opt. Commun. 474 126155Google Scholar

Metrics
  • Abstract views:  4510
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  24 May 2021
  • Accepted Date:  27 September 2021
  • Available Online:  09 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回
Baidu
map