-
A simple and practical method of estimating reflectivity and refractive-index modulation is reported when writing fiber Bragg grating (FBG) into silica fiber core based on 800 nm femtosecond laser pulses and a phase mask. By monitoring and recording the variation of the fiber laser output power, the reflectivity and refractive-index modulation are estimated theoretically and experimentally. The reflectivity of FBG is approximate 96.4%, and the refractive-index modulation is about 1.2×10-3. When the FBG is used as a linear cavity mirror, 15.5 W of output power is obtained under an incident pump power of 51.6 W, corresponding to a slop efficiency of 37.9%. A beam factor of M2=1.4 at an output power of 15 W is measured by using the knife-edge method.
-
Keywords:
- reflectivity /
- refractive-index modulation /
- fiber Bragg gratings /
- Tm3+ doped fiber laser
[1] Hill K O, Fujii Y, Johnson D C, Kawasaki B S 1978 Appl. Phys. Lett. 32 647
[2] Hill K O, Malo B, Bilodeau F, Johnson D C, Albert J 1993 Appl. Phys. Lett. 62 1035
[3] Lai Y, Martinez A, Khrushchev I, Bennion I 2006 Opt. Lett. 31 1672
[4] Thomas J, Wikszak E, clausnitzer T, Fuchs U, Zeitner U, Nolte S, Tunnermann A 2007 Appl. Phys. A 86 153
[5] Martinez A, Dubov M, Khrushchev I, Bennion I 2004 Electron. Lett. 40 1170
[6] Mihailov S J, Smelser C W, Lu P, Walker R B, Grobnic D, Ding H, Henderson G, Unruh J 2003 Opt. Lett. 28 995
[7] Mihailov S J, Smelser C W, Grobnic D, Walker R B, Ping Lu, Huiming D, Unruh J 2004 J. Lightwave Technol. 22 94
[8] Dragomir A, Nikogosyan D. N, Zagorulko K A, Kryukov P G, Dianov E M 2003 Opt. Lett. 28 2171
[9] Bernier M, Faucher D, Vallée R, Saliminia A, Androz G, Sheng Y, Chin S L 2007 Opt. Lett. 32 454
[10] Martinez A, Khrushchev I, Bennion I 2006 Conference on Lasers& Electro-Optics (CLEO 2006), May 22, 2006 p2188
[11] Martinez A, Khrushchev I Y, Bennion I 2005 Electron. Lett. 41 176
[12] Diasty F E, A. Heaney, Erdogan T 2001 Appl. Opt. 40 890
[13] Limberger D F, Salathé H G, Hindle R P, Douay F, Fertein M, Przygodzki E 2004 Appl. Phys. Lett. 84 4983
[14] Stuart J D, Terence K A 1999 J. Lightwave Technol. 17 948
[15] Xu J Q, Prabhu M, Lu J R, Ueda K I, Xing D 2001 Appl. Opt. 40 1983
[16] Jackson S D and, King T A 1996 Proceedings of SPIE. 2676 369
-
[1] Hill K O, Fujii Y, Johnson D C, Kawasaki B S 1978 Appl. Phys. Lett. 32 647
[2] Hill K O, Malo B, Bilodeau F, Johnson D C, Albert J 1993 Appl. Phys. Lett. 62 1035
[3] Lai Y, Martinez A, Khrushchev I, Bennion I 2006 Opt. Lett. 31 1672
[4] Thomas J, Wikszak E, clausnitzer T, Fuchs U, Zeitner U, Nolte S, Tunnermann A 2007 Appl. Phys. A 86 153
[5] Martinez A, Dubov M, Khrushchev I, Bennion I 2004 Electron. Lett. 40 1170
[6] Mihailov S J, Smelser C W, Lu P, Walker R B, Grobnic D, Ding H, Henderson G, Unruh J 2003 Opt. Lett. 28 995
[7] Mihailov S J, Smelser C W, Grobnic D, Walker R B, Ping Lu, Huiming D, Unruh J 2004 J. Lightwave Technol. 22 94
[8] Dragomir A, Nikogosyan D. N, Zagorulko K A, Kryukov P G, Dianov E M 2003 Opt. Lett. 28 2171
[9] Bernier M, Faucher D, Vallée R, Saliminia A, Androz G, Sheng Y, Chin S L 2007 Opt. Lett. 32 454
[10] Martinez A, Khrushchev I, Bennion I 2006 Conference on Lasers& Electro-Optics (CLEO 2006), May 22, 2006 p2188
[11] Martinez A, Khrushchev I Y, Bennion I 2005 Electron. Lett. 41 176
[12] Diasty F E, A. Heaney, Erdogan T 2001 Appl. Opt. 40 890
[13] Limberger D F, Salathé H G, Hindle R P, Douay F, Fertein M, Przygodzki E 2004 Appl. Phys. Lett. 84 4983
[14] Stuart J D, Terence K A 1999 J. Lightwave Technol. 17 948
[15] Xu J Q, Prabhu M, Lu J R, Ueda K I, Xing D 2001 Appl. Opt. 40 1983
[16] Jackson S D and, King T A 1996 Proceedings of SPIE. 2676 369
Catalog
Metrics
- Abstract views: 9666
- PDF Downloads: 590
- Cited By: 0