搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低串扰低弯曲损耗环形芯少模多芯光纤的设计

张媛 姜文帆 陈明阳

引用本文:
Citation:

低串扰低弯曲损耗环形芯少模多芯光纤的设计

张媛, 姜文帆, 陈明阳

Design of ring-core few-mode multi-core fiber with low crosstalk and low bending loss

Zhang Yuan, Jiang Wen-Fan, Chen Ming-Yang
PDF
HTML
导出引用
  • 针对少模多芯光纤中存在的纤芯内模式间的耦合及芯间模式耦合等问题, 提出一种阶跃型环形芯组成的7芯结构光纤, 每个纤芯可支持5个模式. 各纤芯具有一个中心低折射率区域和一个高折射率环, 保证纤芯内模式间均具有较大的折射率差, 从而减小模式间耦合问题. 运用有限元法模拟分析了中心纤芯和外纤芯的弯曲损耗、模式间的串扰特性及纤芯参数对串扰性能的影响. 数据模拟结果表明, 当波长为1.55 μm, 这种多芯光纤在弯曲半径为50 mm时, 弯曲损耗远低于光纤衰减损耗, 且纤芯中5个模式的相邻纤芯之间串扰均小于–20 dB/100 km, 因而这种多芯光纤在小弯曲半径下仍可实现纤芯间独立的长距离信息传输.
    Aiming at solving the problems of coupling between modes in a core and mode coupling between cores in few-mode multi-core fiber, a fiber with seven cores each with step index is proposed, and each core can support five modes. Each core has a central low refractive index region and a high refractive index ring to ensure that there is a large refractive index difference between modes in the core, so as to reduce the problem of mode coupling. The bending loss of central core and outer core, the crosstalk characteristics between modes and the influence of core parameters on crosstalk performance are simulated and analyzed by the finite element method. The simulation results show that at a wavelength of 1.55 μm and a bending radius of 50 mm, the bending loss of the proposed multi-core fiber is much lower than its attenuation loss, and the crosstalk between the adjacent cores of the five core modes are less than –20 dB/100 km. Therefore, this multi-core fiber can realize independent transmission of the core modes with long-distance under small bending radius.
      通信作者: 陈明阳, miniyoung@163.com
      Corresponding author: Chen Ming-Yang, miniyoung@163.com
    [1]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar

    [2]

    Qian D, Huang M F, Huang Y K, Shao Y, Hu J, Wang T 2012 J. Lightwave Technol. 30 1540Google Scholar

    [3]

    Chen H G, Morency S, Jin C, Gregoire N, Essiambre 2016 Nat. Photonics 10 529Google Scholar

    [4]

    Mukasa K, Imamura K, Sugizaki R 2012 European Conference & Exhibition on Optical Communications Amsterdam, Netherlands, June 9, 2012 p1

    [5]

    Igarashi K, Souma D, Wakayama Y, Takeshima K, Suzuki M 2015 Optical Fiber Communications Conference and Exhibition (OFC) Angeles, California, USA, March 22–26, 2015 pTH5C.4

    [6]

    Shibahara K, Lee D, Kobayashi T, Mizuno T, Takara H, Sano A 2016 J. Lightwave Technol. 34 196Google Scholar

    [7]

    Igarashi K, Soma D, Wakayama Y, Takeshima K, Kawaguchi Y, Yoshikane N, Tsuritani T, Morita I, Suzuki M 2016 Opt. Express 24 10213Google Scholar

    [8]

    Kumar D, Ranjan R 2018 Opt. Fiber Technol. 41 95Google Scholar

    [9]

    Xie Y, Pei L, Zheng J, Zhao Q, Ning T, Sun J 2019 Appl. Opt. 58 4373Google Scholar

    [10]

    刘诗男, 宁提纲, 马绍朔 2018 中国激光 45 1206001Google Scholar

    Liu S N, Ning T G, Ma S S 2018 Chin. J. Lasers 45 1206001Google Scholar

    [11]

    Chen S, Tong Y, Tian H 2020 Appl. Opt. 59 4634Google Scholar

    [12]

    Chen X, Li M J, Koh J, Artuso A, Nolan D A 2007 Opt. Express 15 10629Google Scholar

    [13]

    郑斯文, 林桢, 任国斌, 简水生 2013 62 044224Google Scholar

    Zheng S W, Lin Z, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 044224Google Scholar

    [14]

    Fini J M, Nicholson J W 2013 Opt. Express 21 19173Google Scholar

    [15]

    Tsuchida Y, Saitoh K, Koshiba M 2005 Opt. Express 13 4770Google Scholar

    [16]

    Zheng X, Ren G, Huang L, Li H, Zhu B, Zheng H, Cao M 2016 Appl. Opt. 55 2639Google Scholar

    [17]

    Dablu K, Rakesh R 2020 Optoelectron. Lett. 16 126Google Scholar

    [18]

    Farooque U, Singh D K, Ranjan R 2019 Opt. Quantum Electron. 51 371Google Scholar

    [19]

    Zheng S, Ren G, Lin Z, Jian S 2013 Appl. Opt. 52 4541Google Scholar

    [20]

    Ye F, Tu J, Saitoh K, Morioka T 2014 Opt. Express 22 23007Google Scholar

    [21]

    Jaramillo-Avila B, Torres J M, Leon-Montiel R J, Rodriguez-Lara B M 2019 Sci. Rep. 9 15737Google Scholar

    [22]

    Xie Y, Pei L, Zheng J 2020 Opt. Commun. 474 126155Google Scholar

    [23]

    Koshiba M, Saitoh K, Takenaga K 2012 IEEE Photonics J. 4 1987Google Scholar

    [24]

    Ce N X, Amezcua-Correa R, Bai N, Antonio-Lopez, E, Li G 2012 IEEE PTL 24 1914Google Scholar

    [25]

    Sakaguchi J, Klaus W, Mendinueta J M D, Puttnam B J, Kobayashi T 2016 J. Lightwave Technol. 34 93Google Scholar

    [26]

    Yusuke S A, Katsuhiro T, Shoichiro M, Kazuhiko A 2017 Opt. Fiber Technol. 35 19Google Scholar

    [27]

    Xie Y, Pei L, Sun J, Zheng J, Li J J 2019 Opt. Fiber Technol. 53 102001Google Scholar

    [28]

    Xie Y, Pei L, Zheng J, Zhao Q, Li J J 2020 Opt. Express 28 23806Google Scholar

  • 图 1  环芯少模多芯光纤结构示意图 (a)单独纤芯示意图; (b)剖面图

    Fig. 1.  Structure diagram of ring core few-mode multi-core fiber: (a) Single fiber core; (b) whole configuration.

    图 2  环形芯少模多芯光纤折射率分布图

    Fig. 2.  Refractive index distribution of ring core few-mode multi-core fiber.

    图 3  各模式的有效折射率与纤芯内半径Rring_in的关系

    Fig. 3.  Relationship between the effective refractive index of each mode changes with the inner radius Rring_in.

    图 4  弯曲半径为50 mm时, 外纤芯5种模式的电场能量分布 (a) LP01模式; (b) LP11模式; (c) LP21模式; (d) LP02模式; (e) LP31模式

    Fig. 4.  Electric field energy distribution of the outer fiber core in five modes at the bending radius of 50 mm: (a) LP01 mode; (b) LP11 mode; (c) LP21 mode; (d) LP02 mode; (e) LP31 mode.

    图 5  λ = 1550 nm时, 弯曲半径Rb与弯曲损耗的关系曲线 (a) 中心纤芯; (b)外纤芯

    Fig. 5.  Bending loss curves as a function of bending radius Rb at the wavelength of 1550 nm: (a) Central core; (b) outer core.

    图 6  模式有效折射率随弯曲半径Rb的变化曲线(其中λ = 1550 nm, Λ = 45 μm) (a)中心纤芯模式; (b)外纤芯模式

    Fig. 6.  Effective refractive indexes of the modes as a function of bending radius Rb for the fiber with λ = 1550 nm and Λ = 45 μm: (a) Central core; (b) outer core.

    图 7  多芯光纤在50 mm弯曲半径下外纤芯的模场分布图 (a) LP01模; (b) LP11模; (c) LP21模; (d) LP02模; (e) LP31

    Fig. 7.  Mode field distribution of the outer core of the multi-core fiber at the bending radius of 50 mm: (a) LP01 mode; (b) LP11 mode; (c) LP21 mode; (d) LP02 mode; (e) LP31 mode.

    图 8  λ = 1550 nm, $ \varLambda =45 $ μm时, 弯曲半径Rb与串扰的关系曲线 (a)中间纤芯中的LP01模式和外纤芯各模式的串扰; (b)中间纤芯中的LP11模式和外纤芯各模式的串扰; (c)中间纤芯中的LP21模式和外纤芯各模式的串扰; (d)中间纤芯中的LP02模式和外纤芯各模式的串扰; (e)中间纤芯中的LP31模和外纤芯的各模式的串扰

    Fig. 8.  Crosstalk curves for the multi-core optical fiber with λ = 1550 nm and Λ = 45 μm: (a) LP01 mode in the central core and the modes in the outer core; (b) LP11 mode in the central core and the modes in the outer core; (c) LP21 mode in the central core and the modes in the outer core; (d) LP02 mode in the central core and the modes in the outer core; (e) LP31 mode in the central core and the modes in the outer core.

    图 9  芯间距$ \varLambda $与串扰的关系曲线 (a)中间纤芯LP01模式与外纤芯 LP11模式; (b) 中间纤芯LP11模式与外纤芯 LP11模式; (c) 中间纤芯LP21模式与外纤芯 LP11模式; (d) 中间纤芯LP02模式与外纤芯 LP02模式; (e) 中间纤芯LP31模式与外纤芯 LP31模式

    Fig. 9.  Relation curves between core spacing Λ and crosstalk: (a) LP01 mode of the central core and LP11 mode of the outer core; (b) LP11 mode of the central core and LP11 mode of the outer core; (c) LP21 mode of the central core and LP11 mode of the outer core; (d) LP02 mode of the central core and LP02 mode of the outer core; (e) LP31 mode of the central core and LP31 mode of the outer core.

    图 10  纤芯-包层折射率差与芯间串扰的关系 (a)中间纤芯中的LP01模和外纤芯各模式的串扰; (b)中间纤芯中的LP11模和外纤芯各模式的串扰; (c)中间纤芯中的LP21模和外纤芯各模式的串扰曲线; (d)中间纤芯中的LP02模和外纤芯各模式的串扰曲线; (e)中间纤芯中的LP31模和外纤芯的各模式之间的串扰

    Fig. 10.  Relationship between core-cladding refractive index difference and inter-core crosstalk: (a) LP01 mode in the central core and modes in the outer core; (b) LP11 mode in the central core and modes in the outer core; (c) LP21 mode in the central core and modes in the outer core; (d) LP02 mode in the central core and modes in the outer core; (e) LP31 mode in the central core and modes in the outer core.

    表 1  中间纤芯与外纤芯各模式之间的串扰

    Table 1.  Crosstalk between different modes of middle core and outer core.

    XT/[dB·(100 km)–1]
    Core 2LP11b
    LP11b
    LP21b
    LP21b
    LP31b
    LP31b
    Core 1LP11b
    –92.84–129.70–125.62–95.26–118.93–116.99
    LP11b
    –124.63–92.86–99.26–135.26–123.78–120.89
    LP21b
    –79.30–82.52–63.70–72.51–90.05–93.15
    LP21b
    –60.43–69.32–71.89–63.78–89.96–89.17
    LP31b
    –33.35–44.74–46.39–35.01–28.76–46.20
    LP31b
    –41.08–33.92–34.12–50.58–49.63–28.19
    下载: 导出CSV

    表 2  光纤性能对比

    Table 2.  Fiber performance comparison.

    YearNumber of fiber coresStructure of fiber coreCladding diameter/μmBending radius/mmBending lossCrosstalk/dB
    (Transmission
    distance)
    2012[24]7Hole-assisted2251400.242 dB/km–60 (1 km)
    2015[25]36Trench-assisted2001400.001 dB/km–31 (5.5 km)
    2017[26]12Trench-assisted2302100.05 dB/100 turns–48 (500 km)
    2019[27]8Differential inner-cladding160300.0049 dB/100 turns< –50 (100 km)
    2020[28]7Hole-assisted125802.20 × 10–6 dB/m–32 (100 km)
    Our design7Ring-core structure180502.77 × 10–8 dB/m–116 (100 km)
    下载: 导出CSV
    Baidu
  • [1]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar

    [2]

    Qian D, Huang M F, Huang Y K, Shao Y, Hu J, Wang T 2012 J. Lightwave Technol. 30 1540Google Scholar

    [3]

    Chen H G, Morency S, Jin C, Gregoire N, Essiambre 2016 Nat. Photonics 10 529Google Scholar

    [4]

    Mukasa K, Imamura K, Sugizaki R 2012 European Conference & Exhibition on Optical Communications Amsterdam, Netherlands, June 9, 2012 p1

    [5]

    Igarashi K, Souma D, Wakayama Y, Takeshima K, Suzuki M 2015 Optical Fiber Communications Conference and Exhibition (OFC) Angeles, California, USA, March 22–26, 2015 pTH5C.4

    [6]

    Shibahara K, Lee D, Kobayashi T, Mizuno T, Takara H, Sano A 2016 J. Lightwave Technol. 34 196Google Scholar

    [7]

    Igarashi K, Soma D, Wakayama Y, Takeshima K, Kawaguchi Y, Yoshikane N, Tsuritani T, Morita I, Suzuki M 2016 Opt. Express 24 10213Google Scholar

    [8]

    Kumar D, Ranjan R 2018 Opt. Fiber Technol. 41 95Google Scholar

    [9]

    Xie Y, Pei L, Zheng J, Zhao Q, Ning T, Sun J 2019 Appl. Opt. 58 4373Google Scholar

    [10]

    刘诗男, 宁提纲, 马绍朔 2018 中国激光 45 1206001Google Scholar

    Liu S N, Ning T G, Ma S S 2018 Chin. J. Lasers 45 1206001Google Scholar

    [11]

    Chen S, Tong Y, Tian H 2020 Appl. Opt. 59 4634Google Scholar

    [12]

    Chen X, Li M J, Koh J, Artuso A, Nolan D A 2007 Opt. Express 15 10629Google Scholar

    [13]

    郑斯文, 林桢, 任国斌, 简水生 2013 62 044224Google Scholar

    Zheng S W, Lin Z, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 044224Google Scholar

    [14]

    Fini J M, Nicholson J W 2013 Opt. Express 21 19173Google Scholar

    [15]

    Tsuchida Y, Saitoh K, Koshiba M 2005 Opt. Express 13 4770Google Scholar

    [16]

    Zheng X, Ren G, Huang L, Li H, Zhu B, Zheng H, Cao M 2016 Appl. Opt. 55 2639Google Scholar

    [17]

    Dablu K, Rakesh R 2020 Optoelectron. Lett. 16 126Google Scholar

    [18]

    Farooque U, Singh D K, Ranjan R 2019 Opt. Quantum Electron. 51 371Google Scholar

    [19]

    Zheng S, Ren G, Lin Z, Jian S 2013 Appl. Opt. 52 4541Google Scholar

    [20]

    Ye F, Tu J, Saitoh K, Morioka T 2014 Opt. Express 22 23007Google Scholar

    [21]

    Jaramillo-Avila B, Torres J M, Leon-Montiel R J, Rodriguez-Lara B M 2019 Sci. Rep. 9 15737Google Scholar

    [22]

    Xie Y, Pei L, Zheng J 2020 Opt. Commun. 474 126155Google Scholar

    [23]

    Koshiba M, Saitoh K, Takenaga K 2012 IEEE Photonics J. 4 1987Google Scholar

    [24]

    Ce N X, Amezcua-Correa R, Bai N, Antonio-Lopez, E, Li G 2012 IEEE PTL 24 1914Google Scholar

    [25]

    Sakaguchi J, Klaus W, Mendinueta J M D, Puttnam B J, Kobayashi T 2016 J. Lightwave Technol. 34 93Google Scholar

    [26]

    Yusuke S A, Katsuhiro T, Shoichiro M, Kazuhiko A 2017 Opt. Fiber Technol. 35 19Google Scholar

    [27]

    Xie Y, Pei L, Sun J, Zheng J, Li J J 2019 Opt. Fiber Technol. 53 102001Google Scholar

    [28]

    Xie Y, Pei L, Zheng J, Zhao Q, Li J J 2020 Opt. Express 28 23806Google Scholar

  • [1] 惠战强, 刘瑞华, 高黎明, 韩冬冬, 李田甜, 巩稼民. 基于对称双环嵌套管的低损耗弱耦合六模空芯负曲率光纤.  , 2024, 73(7): 070703. doi: 10.7498/aps.73.20231785
    [2] 马丽伶, 李曙光, 李建设, 孟潇剑, 李增辉, 王璐瑶, 邵朋帅. 一种具有低串扰抗弯曲的单沟槽十九芯单模异质光纤.  , 2022, 71(10): 104206. doi: 10.7498/aps.71.20212221
    [3] 王彦, 韩颖, 李增辉, 龚琳, 王璐瑶, 李曙光. 一种沟槽辅助气孔隔离的低串扰高密度异质多芯少模光纤.  , 2022, 71(2): 024205. doi: 10.7498/aps.71.20210974
    [4] 李增辉, 李曙光, 李建设, 王璐瑶, 王晓凯, 王彦, 龚琳, 程同蕾. 一种具有低串扰低非线性的双沟槽环绕型十三芯五模光纤.  , 2021, 70(10): 104208. doi: 10.7498/aps.70.20201825
    [5] 王彦, 韩颖, 李增辉, 龚琳, 王璐瑶, 李曙光. 一种沟槽辅助气孔隔离的低串扰高密度异质多芯少模光纤*.  , 2021, (): . doi: 10.7498/aps.70.20210974
    [6] 郑斯文, 刘亚卓, 罗晓玲, 王丽辉, 张娜, 张晶晶, 金传洋, 徐丙立, 屈强, 陈玲. 三层芯结构在单模大模场面积低弯曲损耗光纤中的应用和分析.  , 2021, 70(22): 224214. doi: 10.7498/aps.70.20210410
    [7] 李雪健, 曹敏, 汤敏, 芈月安, 陶洪, 古皓, 任文华, 简伟, 任国斌. M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性.  , 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [8] 肖士妍, 贾大功, 聂安然, 余辉, 吉喆, 张红霞, 刘铁根. 开放式多通道多芯少模光纤表面等离子体共振生物传感器.  , 2020, 69(13): 137802. doi: 10.7498/aps.69.20200353
    [9] 靳文星, 任国斌, 裴丽, 姜有超, 吴越, 谌亚, 杨宇光, 任文华, 简水生. 环绕空气孔结构的双模大模场面积多芯光纤的特性分析.  , 2017, 66(2): 024210. doi: 10.7498/aps.66.024210
    [10] 郑兴娟, 任国斌, 黄琳, 郑鹤玲. 少模光纤的弯曲损耗研究.  , 2016, 65(6): 064208. doi: 10.7498/aps.65.064208
    [11] 徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫. 具有四模式的低串扰及大群时延多芯微结构光纤的设计.  , 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [12] 廖文英, 范万德, 李园, 陈君, 卜凡华, 李海鹏, 王新亚, 黄鼎铭. 新型全固态准晶体结构大模场光纤特性研究.  , 2014, 63(3): 034206. doi: 10.7498/aps.63.034206
    [13] 李丽君, 来永政, 曹茂永, 刘超, 袁雪梅, 张旭, 管金鹏, 史静, 李晶. 光纤纤芯及包层模有效折射率计算及仿真.  , 2013, 62(14): 140201. doi: 10.7498/aps.62.140201
    [14] 张银, 陈明阳, 周骏, 张永康. 微结构芯大模场平顶光纤及其传输特性分析.  , 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [15] 王鑫, 娄淑琴, 鹿文亮. 新型三角芯抗弯曲大模场面积光子晶体光纤.  , 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [16] 郑斯文, 林桢, 任国斌, 简水生. 一种新型多芯-双模-大模场面积光纤的设计和分析.  , 2013, 62(4): 044224. doi: 10.7498/aps.62.044224
    [17] 林桢, 郑斯文, 任国斌, 简水生. 七芯及十九芯大模场少模光纤的特性研究和比对分析.  , 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [18] 程胜飞, 彭景刚, 李进延, 程兰, 蒋作文, 李海清, 戴能利, 姜发刚, 杨晓波. 空芯光子晶体光纤表面模损耗控制的研究.  , 2012, 61(24): 244207. doi: 10.7498/aps.61.244207
    [19] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器.  , 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [20] 郭艳艳, 侯蓝田. 全固态八边形大模场光子晶体光纤的设计.  , 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
计量
  • 文章访问数:  5482
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-20
  • 修回日期:  2022-01-27
  • 上网日期:  2022-02-02
  • 刊出日期:  2022-05-05

/

返回文章
返回
Baidu
map