搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环绕空气孔结构的双模大模场面积多芯光纤的特性分析

靳文星 任国斌 裴丽 姜有超 吴越 谌亚 杨宇光 任文华 简水生

引用本文:
Citation:

环绕空气孔结构的双模大模场面积多芯光纤的特性分析

靳文星, 任国斌, 裴丽, 姜有超, 吴越, 谌亚, 杨宇光, 任文华, 简水生

Dual-mode large-mode-area multi-core fiber with circularly arranged airhole cores

Jin Wen-Xing, Ren Guo-Bin, Pei Li, Jiang You-Chao, Wu Yue, Shen Ya, Yang Yu-Guang, Ren Wen-Hua, Jian Shui-Sheng
PDF
导出引用
  • 将多芯光纤与无芯空气孔结构结合,设计了一种具有大模场面积的十九芯双模光纤结构.该结构由位于中心的5根常规纤芯及环绕其周围的14根空气纤芯按正六边形排布构成,能实现稳定的双模传输,其基模有效模场面积的最小值约为285.10 μm2.系统地分析了影响模式传输特性和模式有效模场面积的结构参数:纤芯间距、相对折射率差和纤芯大小.通过对这三个参数的优化,在双模传输的条件下,增大基模的有效模场面积.此外,具有大模场面积的多芯双模光纤结构具有良好的抗弯曲特性,基模弯曲损耗小于5×10-5dB/m.该结构还具有制作简单、设计灵活等优点,适用于高功率光纤激光器和光纤放大器.
    Multi-core fiber has aroused considerable interest as one of potential candidates for space division multiplexing that provides an additional freedom degree to increase optical fiber capacity to overcome the transmission bottleneck of current single-mode fiber optical networks. Few-mode fiber is also under intense study as a means to achieve space division multiplexing. We propose a novel dual-mode large-mode-area multi-core fiber (DMLMAMCF), which uses multi-core structure to realize few-mode condition when pursuing large mode-area. The proposed fiber consists of 5 conventional silica-based cores in the center region and 14 air hole cores surrounding the center cores. The outer circle with 12 air hole cores, which function similarly to the fluorine doping region in the bend-insensitive fiber, can mitigate the bending loss when keeping large mode area. The symmetrically distributed two cores on both sides of the center core in central region can reduce the half second-order LP11 mode consisting of two degenerate HE11 modes, TE01 mode, two degenerate HE21 modes and TM01 mode, thus leading to the remaining four vector modes, i.e. two degenerate HE11 modes and two degenerate HE21 modes. That is the reason why we call it strict dual-mode. We focus on large-mode-area properties and bending characteristics of the dual-mode. The influence of structural parameters that include corepitch Λ, refractive index difference between core and cladding Δn, and fiber core radius a, on mode characteristics and mode area of HE11 mode and HE21 mode is investigated in detail. The results reveal that it is helpful to increase the effective area of fundamental mode when we increase the value of corepitch, reduce the refractive index and fiber core radius. The effective mode area of HE11 is about 285.10 μm2 under the strict dual-mode condition. In addition, the relationship between bending loss and bending radius, and the relationship between effective mode area and bending radius of two modes are both investigated. For the HE11 mode, the least bending loss is about 5×10-5 dB/m while the least effective mode area with bending radius larger than 0.6 m is about 285.10 μm2. The HE21 mode is more sensitive to bend effect. The least bending loss is about 0.028 dB/m and the effective mode area is larger than 280.00 μm2 except for resonant coupling points. Large effective areas of both modes with low bending loss can be realized. Larger effective mode area with larger corepitch, appropriate refractive index difference and fiber core radius can be achieved. This fiber may find its usage in high power fiber lasers and amplifiers.
      通信作者: 靳文星, 13111011@bjtu.edu.cn
    • 基金项目: 国家杰出青年科学基金(批准号:61525501)和国家自然科学基金(批准号:61178008,61275092,61405008)资助的课题.
      Corresponding author: Jin Wen-Xing, 13111011@bjtu.edu.cn
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61525501) and the National Natural Science Foundation of China (Grant Nos. 61178008, 61275092, 61405008).
    [1]

    Essiambre R J, Ryf R, Fontaine N K, Randel S 2013 IEEE Photonics. J. 5 0701307

    [2]

    Winzer P J 2012 IEEE Photonics. J. 4 647

    [3]

    Winzer P J 2014 Nat. Photon. 8 345

    [4]

    Sano A, Masuda H, Kobayashi T, Fujiwara M, Horikoshi K, Yoshida E, Miyamoto Y, Matsui M, Mizoguchi M, Yamazaki H, Sakamaki Y, Ishii H 2011 J. Lightwave Technol. 29 578

    [5]

    Houtsma V, Veen D V, Chow H 2016 J. Lightwave Technol. 34 2005

    [6]

    Li F, Yu J, Cao Z, Chen M, Zhang J, Li X 2016 Opt. Express 24 2648

    [7]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photon. 7 354

    [8]

    Li G, Bai N, Zhao N, Xia C 2014 Adv. Opt. Photon. 6 413

    [9]

    Van Uden R G H, Correa R A, Lopez E A, Huijskens F M, Xia C, Li G, Schlzgen A, Waardt H D, Koonen A M J, Okonkwo C M 2014 Nat. Photon. 8 865

    [10]

    Saitoh K, Matsuo S 2013 J. Nanophotonics. 2 441

    [11]

    Sakaguchi J, Puttnam B J, Klaus W, Awaji Y, Wada N, Kanno A, Kawanishi T, Imamura K, Inaba H, Mukasa K, Sugizaki R, Kobayashi T, Watanabe M 2013 J. Lightwave Technol. 31 554

    [12]

    Sakaguchi J, Klaus W, Mendinueta J M D, Puttnam B J, Luis R S, Awaji Y, Wada N, Hayashi T, Nakanish T, Watanabe T, Kokubun Y, Takahata T, Kobayashi T 2016 J. Lightwave Technol. 34 93

    [13]

    Kong F, Saitoh K, Mcclane D, Hawkins T, Foy P, Gu G, Dong L 2012 Opt. Express 20 26363

    [14]

    Li S H, Wang J 2015 Opt. Express 23 18736

    [15]

    Napierala M, Beres P E, Nasilowski T, Mergo P, Berghmans F, Thienpont H 2012 IEEE Photon. Technol. Lett. 24 1409

    [16]

    Masahiro K, Kunimasa S, Katsuhiro T, Shoji T, Shoichiro M, Munehisa F 2012 Opt. Express 20 15061

    [17]

    Chen M Y, Li Y R, Zhou J, Zhang Y K 2013 J. Lightwave Technol. 31 476

    [18]

    Ryf R, Randel S, Gnauck A H, Bolle C, Sierra A, Mumtaz S, Esmaeelpour M, Burrows E C, Essiambre R J, Winzer P J, Peckham D W, McCurdy A H, Lingle R 2012 J. Lightwave Technol. 30 521

    [19]

    Zheng S W, Ren G B, Lin Z, Jian W, Jian S S 2013 Opt. Fiber. Technol. 19 419

    [20]

    Lin Z, Ren G B, Zheng S W, Jian S S 2013 Opt. Laser. Technol. 51 11

    [21]

    Zheng S W, Lin Z, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 044224 (in Chinese)[郑斯文, 林桢, 任国斌, 简水生2013 62 044224]

    [22]

    Lin Z, Zheng S W, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 064214 (in Chinese)[林桢, 郑斯文, 任国斌, 简水生2013 62 064214]

    [23]

    Vogel M M, AbdouA M, Voss A, Graf T 2009 Opt. Lett. 34 2876

    [24]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (London:Chapman and Hall Ltd) p7

    [25]

    Ren G B, Lin Z, Zheng S W, Jian S S 2013 Opt. Lett. 38 781

  • [1]

    Essiambre R J, Ryf R, Fontaine N K, Randel S 2013 IEEE Photonics. J. 5 0701307

    [2]

    Winzer P J 2012 IEEE Photonics. J. 4 647

    [3]

    Winzer P J 2014 Nat. Photon. 8 345

    [4]

    Sano A, Masuda H, Kobayashi T, Fujiwara M, Horikoshi K, Yoshida E, Miyamoto Y, Matsui M, Mizoguchi M, Yamazaki H, Sakamaki Y, Ishii H 2011 J. Lightwave Technol. 29 578

    [5]

    Houtsma V, Veen D V, Chow H 2016 J. Lightwave Technol. 34 2005

    [6]

    Li F, Yu J, Cao Z, Chen M, Zhang J, Li X 2016 Opt. Express 24 2648

    [7]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photon. 7 354

    [8]

    Li G, Bai N, Zhao N, Xia C 2014 Adv. Opt. Photon. 6 413

    [9]

    Van Uden R G H, Correa R A, Lopez E A, Huijskens F M, Xia C, Li G, Schlzgen A, Waardt H D, Koonen A M J, Okonkwo C M 2014 Nat. Photon. 8 865

    [10]

    Saitoh K, Matsuo S 2013 J. Nanophotonics. 2 441

    [11]

    Sakaguchi J, Puttnam B J, Klaus W, Awaji Y, Wada N, Kanno A, Kawanishi T, Imamura K, Inaba H, Mukasa K, Sugizaki R, Kobayashi T, Watanabe M 2013 J. Lightwave Technol. 31 554

    [12]

    Sakaguchi J, Klaus W, Mendinueta J M D, Puttnam B J, Luis R S, Awaji Y, Wada N, Hayashi T, Nakanish T, Watanabe T, Kokubun Y, Takahata T, Kobayashi T 2016 J. Lightwave Technol. 34 93

    [13]

    Kong F, Saitoh K, Mcclane D, Hawkins T, Foy P, Gu G, Dong L 2012 Opt. Express 20 26363

    [14]

    Li S H, Wang J 2015 Opt. Express 23 18736

    [15]

    Napierala M, Beres P E, Nasilowski T, Mergo P, Berghmans F, Thienpont H 2012 IEEE Photon. Technol. Lett. 24 1409

    [16]

    Masahiro K, Kunimasa S, Katsuhiro T, Shoji T, Shoichiro M, Munehisa F 2012 Opt. Express 20 15061

    [17]

    Chen M Y, Li Y R, Zhou J, Zhang Y K 2013 J. Lightwave Technol. 31 476

    [18]

    Ryf R, Randel S, Gnauck A H, Bolle C, Sierra A, Mumtaz S, Esmaeelpour M, Burrows E C, Essiambre R J, Winzer P J, Peckham D W, McCurdy A H, Lingle R 2012 J. Lightwave Technol. 30 521

    [19]

    Zheng S W, Ren G B, Lin Z, Jian W, Jian S S 2013 Opt. Fiber. Technol. 19 419

    [20]

    Lin Z, Ren G B, Zheng S W, Jian S S 2013 Opt. Laser. Technol. 51 11

    [21]

    Zheng S W, Lin Z, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 044224 (in Chinese)[郑斯文, 林桢, 任国斌, 简水生2013 62 044224]

    [22]

    Lin Z, Zheng S W, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 064214 (in Chinese)[林桢, 郑斯文, 任国斌, 简水生2013 62 064214]

    [23]

    Vogel M M, AbdouA M, Voss A, Graf T 2009 Opt. Lett. 34 2876

    [24]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (London:Chapman and Hall Ltd) p7

    [25]

    Ren G B, Lin Z, Zheng S W, Jian S S 2013 Opt. Lett. 38 781

  • [1] 惠战强, 刘瑞华, 高黎明, 韩冬冬, 李田甜, 巩稼民. 基于对称双环嵌套管的低损耗弱耦合六模空芯负曲率光纤.  , 2024, 73(7): 070703. doi: 10.7498/aps.73.20231785
    [2] 孟令知, 苑立波. 离散波导热扩散耦合机理及其应用.  , 2023, 72(24): 246601. doi: 10.7498/aps.72.20230204
    [3] 张媛, 姜文帆, 陈明阳. 低串扰低弯曲损耗环形芯少模多芯光纤的设计.  , 2022, 71(9): 094205. doi: 10.7498/aps.71.20211534
    [4] 郑斯文, 刘亚卓, 罗晓玲, 王丽辉, 张娜, 张晶晶, 金传洋, 徐丙立, 屈强, 陈玲. 三层芯结构在单模大模场面积低弯曲损耗光纤中的应用和分析.  , 2021, 70(22): 224214. doi: 10.7498/aps.70.20210410
    [5] 郑兴娟, 任国斌, 黄琳, 郑鹤玲. 少模光纤的弯曲损耗研究.  , 2016, 65(6): 064208. doi: 10.7498/aps.65.064208
    [6] 徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫. 具有四模式的低串扰及大群时延多芯微结构光纤的设计.  , 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [7] 赵楠, 陈瑰, 王一礴, 彭景刚, 李进延. 双包层大模场面积保偏掺镱光子晶体光纤研究.  , 2014, 63(2): 024202. doi: 10.7498/aps.63.024202
    [8] 陈艳, 周桂耀, 夏长明, 侯峙云, 刘宏展, 王超. 具有双模特性的大模场面积微结构光纤的设计.  , 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [9] 廖文英, 范万德, 李园, 陈君, 卜凡华, 李海鹏, 王新亚, 黄鼎铭. 新型全固态准晶体结构大模场光纤特性研究.  , 2014, 63(3): 034206. doi: 10.7498/aps.63.034206
    [10] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究.  , 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [11] 张银, 陈明阳, 周骏, 张永康. 微结构芯大模场平顶光纤及其传输特性分析.  , 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [12] 王鑫, 娄淑琴, 鹿文亮. 新型三角芯抗弯曲大模场面积光子晶体光纤.  , 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [13] 娄淑琴, 鹿文亮, 王鑫. 新型抗弯曲大模场面积光子晶体光纤.  , 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [14] 林桢, 郑斯文, 任国斌, 简水生. 七芯及十九芯大模场少模光纤的特性研究和比对分析.  , 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [15] 郑斯文, 林桢, 任国斌, 简水生. 一种新型多芯-双模-大模场面积光纤的设计和分析.  , 2013, 62(4): 044224. doi: 10.7498/aps.62.044224
    [16] 陈瑰, 蒋作文, 彭景刚, 李海清, 戴能利, 李进延. 空气包层大模场面积掺镱光子晶体光纤研究.  , 2012, 61(14): 144206. doi: 10.7498/aps.61.144206
    [17] 张鑫, 胡明列, 宋有健, 柴路, 王清月. 大模场面积光子晶体光纤耗散孤子锁模激光器.  , 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [18] 郭艳艳, 侯蓝田. 全固态八边形大模场光子晶体光纤的设计.  , 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
    [19] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器.  , 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [20] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器.  , 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
计量
  • 文章访问数:  6297
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-27
  • 修回日期:  2016-10-25
  • 刊出日期:  2017-01-20

/

返回文章
返回
Baidu
map