搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种具有低串扰低非线性的双沟槽环绕型十三芯五模光纤

李增辉 李曙光 李建设 王璐瑶 王晓凯 王彦 龚琳 程同蕾

引用本文:
Citation:

一种具有低串扰低非线性的双沟槽环绕型十三芯五模光纤

李增辉, 李曙光, 李建设, 王璐瑶, 王晓凯, 王彦, 龚琳, 程同蕾

Double-trench assisted thirteen-core five-mode fibers with low crosstalk and low non-linearity

Li Zeng-Hui, Li Shu-Guang, Li Jian-She, Wang Lu-Yao, Wang Xiao-Kai, Wang Yan, Gong Lin, Cheng Tong-Lei
PDF
HTML
导出引用
  • 信息化对高速大容量光纤网络的需求日益强烈, 空分/模分复用是继波分复用之后可使通信容量翻倍的新一代光纤通信技术. 本文提出了一种双沟槽环绕型十三芯五模光纤, 以满足未来对高速大容量信息传输的需求. 针对空分-模分复用中降低串扰的目标设计优化光纤, 采用双沟槽环绕结构, 将光能量更好地限制在纤芯内, 从而减小芯间和模间串扰. 利用全矢量有限元法与功率耦合理论相结合计算并分析多芯光纤的串扰和传输特性. 经过优化结构参数, 可使光纤在1.3—1.7 μm波段内稳定传输LP01, LP11, LP21, LP02, 和LP31 5个模式; 信号在1.55 μm波长处传输60 km时, 对应于以上5个模式相邻纤芯的芯间串扰分别为–122.37, –114.76, –106.28, –100.68, –92.81 dB, 相邻模式之间的有效折射率差大于1.026 × 10–3, 芯间和模间串扰可以被有效抑制; 5个模式对应的非线性系数分别为0.74, 0.82, 0.88, 1.26, 0.93 W–1·km–1, 均可保持低非线性传输. 该光纤结构简单紧凑, 可利用气相沉积法和堆叠法制备预制棒, 进一步拉制成具有低串扰低非线性的十三芯五模光纤, 可应用于长距离高速大容量光纤传输系统.
    Information technology has an increasingly strong demand for high-speed and large-capacity optical fiber networks. Space division multiplex(SDM) is a new generation of optical fiber communication technology which can be several times in communication capacity higher than the wavelength division multiplexing systems. In this paper, we present a kind of 13-core 5-mode fiber with double trench structure to meet the demand for high-speed and large-capacity information transmission in the future. In order to solve the crosstalk problem in SDM, a double-trench structure is adopted to better limit the light energy in the fiber core, thus reducing the crosstalk between cores and modes. The crosstalk and transmission characteristics of multi-core fiber are calculated and analyzed by the full vector finite element method and coupled power theory. After the optimization of structural parameters, the fiber can stably transmit LP01, LP11, LP21, LP02 and LP31 in the band of 1.3–1.7 μm; when the signal is transmitted at the 1.55 μm for 60 km, the inter-core crosstalks corresponding to the adjacent fiber cores in the above five modes are –122.37 dB, –114.76 dB, –106.28 dB, –100.68 dB and –92.813 dB, respectively; the effective refractive index difference between adjacent modes is greater than 1.026 × 10–3; inter-core and inter-mode crosstalk can be effectively suppressed. The corresponding non-linear coefficients of the 5-modes are 0.74 W–1·km–1, 0.82 W–1·km–1, 0.88 W–1·km–1, 1.26 W–1·km–1, 0.93 W–1·km–1, which can maintain low non-linear transmission. The structure of fiber is simple and compact, and the preform can be fabricated by vapor deposition method and stack method, then the 13-core five-mode fiber with low crosstalk and low nonlinear can be further drawn, which can be used in a long distance high-speed and large-capacity fiber transmission system.
      通信作者: 李曙光, shuguangli@ysu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFB2204001)、国家自然科学基金(批准号: 12074331)、河北省自然科学基金(批准号: F2017203193, F2020203050, F2017203110)和河北省博士后基金(批准号: B2018003008)资助的课题
      Corresponding author: Li Shu-Guang, shuguangli@ysu.edu.cn
    • Funds: Project is supported by the National Key Research and Development Project, China (Grant No. 2019YFB2204001), the National Natural Science Foundation of China (Grant No.12074331), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2017203193, F2020203050, F2017203110), and the Postdoctoral Preferred Funding Research Project of Hebei Province, China (Grant No. B2018003008)
    [1]

    张伟, 陈鹤鸣 2017 光通信研究 4 26Google Scholar

    Zhang W, Chen H M 2017 Study on Optical Communications 4 26Google Scholar

    [2]

    Takenaga K, Arakawa Y, Tanigawa S, Guan N, Matsuo S, Saltoh K, Koshiba M 2011 IEICE Trans. Commun. E94B 409Google Scholar

    [3]

    Xie Y H, Pei L, Zheng J J, Zhao Q, Ning T, Li J 2020 Opt. Commun. 474 126155Google Scholar

    [4]

    Sakamoto T, Saitoh K, Saitoh S, Shibahara K, Wada M, Abe Y, Urushibara A, Takenaga K, Mizuno T, Matsui T, Aikawa K, Miyamoto Y, Nakajima K 2018 J. Lightwave Technol. 36 1226Google Scholar

    [5]

    Mori T, Sakamoto T, Wada M, Yamamoto T, Yamamoto F 2014 Optical Fiber Communications Conference and Exhibition (OFC) San Francisco, CA Mar. 09–13, 2014

    [6]

    Kumar D, Ranjan R 2018 Opt. Fiber Technol. 41 95Google Scholar

    [7]

    Sasaki Y, Takenaga K, Matsuo S, Aikawa K, Saitoh K 2017 Opt. Fiber Technol. 35 19Google Scholar

    [8]

    苑立波 2019 激光与光电子学进展 56 170612Google Scholar

    Yuan L B 2019 Laser. Opt. Pro. 56 170612Google Scholar

    [9]

    涂佳静, 乔喜慧, 隆克平 2017 光子学报 46 0106001Google Scholar

    Tu J J, Qiao X H, Long K P 2017 Acta Photon. Sin. 46 0106001Google Scholar

    [10]

    郑斯文 2014 博士学位论文 (北京: 北京交通大学)

    Zheng S W 2014 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [11]

    Takenaga K, Arakawa Y, Tanigawa S, Guan N, Matsuo S, Saitoh K, Koshiba M 2011 Conference on Optical Fiber Communication (OFC) Los Angeles, CA Mar. 06–10, 2011

    [12]

    Koshiba M, Saitoh K, Kokubun Y 2009 IEICE Electron. Express 6 98Google Scholar

    [13]

    Xia C, Amezcua-Correa R, Bai N, Antonio-Lopez E, Arrioja D M, Schulzgen A, Richardson M, Linares J, Montero C, Mateo E, Zhou X, Li G F 2012 IEEE Photonics Technol. Lett. 24 1914Google Scholar

    [14]

    徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫 2015 64 234206Google Scholar

    Xu M N, Zhou G Y, Chen C, Hou Z Y, Xia C M, Zhou G, Liu H Z, Liu J T, Zhang W 2015 Acta Phys. Sin. 64 234206Google Scholar

    [15]

    姜姗姗, 刘艳, 邢尔军 2015 64 064212Google Scholar

    Jang S S, Liu Y, Xing E J, 2015 Acta Phys. Sin. 64 064212Google Scholar

    [16]

    裴丽, 王建帅, 郑晶晶, 宁提纲, 解宇恒, 何倩, 李晶 2018 红外与激光工程 10 35Google Scholar

    Pei L, Wang J S, Zheng J J, Ning T G, Xie Y H, He Q, Li J 2018 Infrared and Laser Engineering 10 35Google Scholar

    [17]

    曹原, 施伟华, 郁小松, 赵永利, 张杰 2017 光子学报 46 45Google Scholar

    Cao Y, Shi W H, Yu X S, Zhao Y L, Zhang J 2017 Acta Photon. Sin. 46 45Google Scholar

    [18]

    Gruner-Nielsen L, Sun Y, Nicholson J W, Jakobsen D, Jespersen KG, Lingle R, Palsdottir B 2012 J. Lightwave Technol. 30 3693Google Scholar

    [19]

    赵佳佳 2018 博士学位论文 (武汉: 华中科技大学)

    Zhao J J 2018 Ph. D. Dissertation (Wuhan: Huazhong University Science and Technology) (in Chinese)

    [20]

    刘俊彦 2015 硕士学位论文 (北京: 北京邮电大学)

    Liu J Y 2015 M. S. Dissertation (Beijing: Beijing Youdian University) (in Chinese)

    [21]

    Qiu J C, Liu H K, Tian X X 2008 Acta Photon. Sin. 37 297

    [22]

    Wang W C, Sun C Y, Wang N, Jia H Z 2020 Opt. Commun. 471 125823Google Scholar

    [23]

    Takenaga K, Sasaki Y, Guan N, Matsuo S, Kasahara M, Saitoh K, Koshiba M 2012 2012 IEEE Photonics Society Summer Topical Meeting Series Seattle, WA, USA August 27 2012 p191

    [24]

    Begum F, Namihira Y, Razzak SMA, Kaijage S, Miyagi K, Hai NH, Zou N 2007 Opt. Rev. 14 120Google Scholar

    [25]

    Liu M, Yang J, Zhu T 2015 JETP Letters 102 274Google Scholar

    [26]

    Wan X, Wang Z Q, Sun B, Zhang Z X 2020 Opt. Quantum Electron. 52 289Google Scholar

  • 图 1  双沟槽环绕型十三芯五模光纤结构

    Fig. 1.  Schematic structure of a double-trench assisted 13-core 5-LP mode fiber.

    图 2  相邻纤芯折射率分布

    Fig. 2.  Refractive index profile of adjacent fiber-core.

    图 3  具有横向随机波动的两相邻纤芯之间的串扰

    Fig. 3.  Crosstalk between two adjacent cores with random fluctuation along longitudinal direction.

    图 4  无/单/双沟槽结构中LP01模式的芯间串扰对比

    Fig. 4.  No/single/double trench structure crosstalk contrast of LP01 mode.

    图 5  Δ2 = –0.01时芯间串扰与沟槽宽度的关系

    Fig. 5.  Relation between crosstalk and trench width at Δ2 = –0.01.

    图 6  c1, c2 = 4 μm时串扰和Δ2的关系

    Fig. 6.  Relation between crosstalk and Δ2 at c1, c2 = 4 μm.

    图 7  在∆1 = 0.015, 波长1.55 μm处5个模式的串扰、AeffΔneff与芯区大小的关系 (a)芯区大小和串扰的关系; (b)芯区大小和Aeff的关系; (c)芯区大小和模式折射率差的关系

    Fig. 7.  The relationship between crosstalk, Aeff, Δneff of five modes and core size at 1.55 μm: (a) The relationship between core size and crosstalk; (b) the relationship between core size and Aeff; (c) the relationship between core size and Δneff.

    图 8  在1.55 μm处5个模式的芯间串扰、Aeff和∆neff与芯区相对折射率差Δ1的关系 (a) Δ1和芯间串扰的关系; (b) Δ1Aeff的关系; (c) Δ1和模式折射率差的关系

    Fig. 8.  . The relationship between crosstalk, Aeff, ∆neff of five modes and Δ1 at 1.55 μm: (a) The relationship between Δ1 and crosstalk; (b) The relationship between Δ1 and Aeff; (c) The relationship between Δ1 and ∆neff.

    图 9  5-LP横向模式剖面

    Fig. 9.  Transverse mode profile for 5-LP modes.

    图 10  双沟槽十三芯五模光纤芯间串扰与波长关系

    Fig. 10.  Relation between wavelength and core-to-core crosstalk for the double-trench assisted 13-core 5-LP mode fiber.

    图 11  5个LP模式之间的∆neff和MDGD与波长的关系 (a) ∆neff与波长的关系; (b)相邻模式之间差分群时延与波长的关系

    Fig. 11.  The relationship between ∆neff, MDGD of five modes and wavelength: (a) The relationship between ∆neff and wavelength; (b) the relationship between ∆neff and wavelength.

    图 12  5个LP模式的有效模面积Aeff和非线性系数γ与波长的关系 (a) 有效模面积Aeff与波长的关系; (b)非线性系数γ与波长的关系

    Fig. 12.  The relationship between Aeff, γ of five modes and wavelength: (a) The relationship between Aeff and wavelength; (b) the relationship between γ and wavelength.

    图 13  5-LP的色散与波长的关系

    Fig. 13.  Relation between dispersion and wavelength for 5-LP modes.

    表 1  光纤初始参数

    Table 1.  The initial fiber parameters

    a/μmb1/μmb2/μmc1/μmc2/μmΛ/μmR/μmΔ1Δ2
    62254421000.017–0.01
    下载: 导出CSV

    表 2  光纤优化参数

    Table 2.  The optimal fiber performance.

    a/μmb1/μmb2/μmc1/μmc2/μmΛ/μmR/μmΔ1Δ2
    82244421000.015–0.008
    下载: 导出CSV

    表 3  5个LP模式的串扰、有效模面积和MDGD(LPmn–LP01)

    Table 3.  Estimated values of crosstalk, effective area and MDGD(LPmn–LP01) for 5-LP modes at 1.55 μm.

    ModesCrosstalk/
    (dB/60 km)
    Aeff /μm2MDGD/
    (ps·m–1)
    LP01–122.371470
    LP11–114.761345.855
    LP21–106.2812513.452
    LP02–100.688715.799
    LP31–92.8111822.314
    下载: 导出CSV
    Baidu
  • [1]

    张伟, 陈鹤鸣 2017 光通信研究 4 26Google Scholar

    Zhang W, Chen H M 2017 Study on Optical Communications 4 26Google Scholar

    [2]

    Takenaga K, Arakawa Y, Tanigawa S, Guan N, Matsuo S, Saltoh K, Koshiba M 2011 IEICE Trans. Commun. E94B 409Google Scholar

    [3]

    Xie Y H, Pei L, Zheng J J, Zhao Q, Ning T, Li J 2020 Opt. Commun. 474 126155Google Scholar

    [4]

    Sakamoto T, Saitoh K, Saitoh S, Shibahara K, Wada M, Abe Y, Urushibara A, Takenaga K, Mizuno T, Matsui T, Aikawa K, Miyamoto Y, Nakajima K 2018 J. Lightwave Technol. 36 1226Google Scholar

    [5]

    Mori T, Sakamoto T, Wada M, Yamamoto T, Yamamoto F 2014 Optical Fiber Communications Conference and Exhibition (OFC) San Francisco, CA Mar. 09–13, 2014

    [6]

    Kumar D, Ranjan R 2018 Opt. Fiber Technol. 41 95Google Scholar

    [7]

    Sasaki Y, Takenaga K, Matsuo S, Aikawa K, Saitoh K 2017 Opt. Fiber Technol. 35 19Google Scholar

    [8]

    苑立波 2019 激光与光电子学进展 56 170612Google Scholar

    Yuan L B 2019 Laser. Opt. Pro. 56 170612Google Scholar

    [9]

    涂佳静, 乔喜慧, 隆克平 2017 光子学报 46 0106001Google Scholar

    Tu J J, Qiao X H, Long K P 2017 Acta Photon. Sin. 46 0106001Google Scholar

    [10]

    郑斯文 2014 博士学位论文 (北京: 北京交通大学)

    Zheng S W 2014 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [11]

    Takenaga K, Arakawa Y, Tanigawa S, Guan N, Matsuo S, Saitoh K, Koshiba M 2011 Conference on Optical Fiber Communication (OFC) Los Angeles, CA Mar. 06–10, 2011

    [12]

    Koshiba M, Saitoh K, Kokubun Y 2009 IEICE Electron. Express 6 98Google Scholar

    [13]

    Xia C, Amezcua-Correa R, Bai N, Antonio-Lopez E, Arrioja D M, Schulzgen A, Richardson M, Linares J, Montero C, Mateo E, Zhou X, Li G F 2012 IEEE Photonics Technol. Lett. 24 1914Google Scholar

    [14]

    徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫 2015 64 234206Google Scholar

    Xu M N, Zhou G Y, Chen C, Hou Z Y, Xia C M, Zhou G, Liu H Z, Liu J T, Zhang W 2015 Acta Phys. Sin. 64 234206Google Scholar

    [15]

    姜姗姗, 刘艳, 邢尔军 2015 64 064212Google Scholar

    Jang S S, Liu Y, Xing E J, 2015 Acta Phys. Sin. 64 064212Google Scholar

    [16]

    裴丽, 王建帅, 郑晶晶, 宁提纲, 解宇恒, 何倩, 李晶 2018 红外与激光工程 10 35Google Scholar

    Pei L, Wang J S, Zheng J J, Ning T G, Xie Y H, He Q, Li J 2018 Infrared and Laser Engineering 10 35Google Scholar

    [17]

    曹原, 施伟华, 郁小松, 赵永利, 张杰 2017 光子学报 46 45Google Scholar

    Cao Y, Shi W H, Yu X S, Zhao Y L, Zhang J 2017 Acta Photon. Sin. 46 45Google Scholar

    [18]

    Gruner-Nielsen L, Sun Y, Nicholson J W, Jakobsen D, Jespersen KG, Lingle R, Palsdottir B 2012 J. Lightwave Technol. 30 3693Google Scholar

    [19]

    赵佳佳 2018 博士学位论文 (武汉: 华中科技大学)

    Zhao J J 2018 Ph. D. Dissertation (Wuhan: Huazhong University Science and Technology) (in Chinese)

    [20]

    刘俊彦 2015 硕士学位论文 (北京: 北京邮电大学)

    Liu J Y 2015 M. S. Dissertation (Beijing: Beijing Youdian University) (in Chinese)

    [21]

    Qiu J C, Liu H K, Tian X X 2008 Acta Photon. Sin. 37 297

    [22]

    Wang W C, Sun C Y, Wang N, Jia H Z 2020 Opt. Commun. 471 125823Google Scholar

    [23]

    Takenaga K, Sasaki Y, Guan N, Matsuo S, Kasahara M, Saitoh K, Koshiba M 2012 2012 IEEE Photonics Society Summer Topical Meeting Series Seattle, WA, USA August 27 2012 p191

    [24]

    Begum F, Namihira Y, Razzak SMA, Kaijage S, Miyagi K, Hai NH, Zou N 2007 Opt. Rev. 14 120Google Scholar

    [25]

    Liu M, Yang J, Zhu T 2015 JETP Letters 102 274Google Scholar

    [26]

    Wan X, Wang Z Q, Sun B, Zhang Z X 2020 Opt. Quantum Electron. 52 289Google Scholar

  • [1] 李洋帆, 郭红霞, 张鸿, 白如雪, 张凤祁, 马武英, 钟向丽, 李济芳, 卢小杰. 双沟槽SiC 金属-氧化物-半导体型场效应管重离子单粒子效应.  , 2024, 73(2): 026103. doi: 10.7498/aps.73.20231440
    [2] 郭建飞, 李浩, 王梓名, 钟鸣浩, 常帅军, 欧树基, 马海伦, 刘莉. 非钳位感性开关测试下双沟槽4H-SiC 功率MOSFET失效机理研究.  , 2022, 71(13): 137302. doi: 10.7498/aps.71.20220095
    [3] 王健, 吴重庆. 低差分模式群时延少模光纤的变分法分析及优化.  , 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [4] 张媛, 姜文帆, 陈明阳. 低串扰低弯曲损耗环形芯少模多芯光纤的设计.  , 2022, 71(9): 094205. doi: 10.7498/aps.71.20211534
    [5] 马丽伶, 李曙光, 李建设, 孟潇剑, 李增辉, 王璐瑶, 邵朋帅. 一种具有低串扰抗弯曲的单沟槽十九芯单模异质光纤.  , 2022, 71(10): 104206. doi: 10.7498/aps.71.20212221
    [6] 王彦, 韩颖, 李增辉, 龚琳, 王璐瑶, 李曙光. 一种沟槽辅助气孔隔离的低串扰高密度异质多芯少模光纤.  , 2022, 71(2): 024205. doi: 10.7498/aps.71.20210974
    [7] 王彦, 韩颖, 李增辉, 龚琳, 王璐瑶, 李曙光. 一种沟槽辅助气孔隔离的低串扰高密度异质多芯少模光纤*.  , 2021, (): . doi: 10.7498/aps.70.20210974
    [8] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展.  , 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [9] 低维材料非线性光学与器件专题编者按.  , 2020, 69(18): 180101. doi: 10.7498/aps.69.180101
    [10] 孙亚秀, 卓庆坤, 姜庆辉, 李千. 基于多导体传输线理论的差模激励新型线束串扰模型研究.  , 2015, 64(4): 044102. doi: 10.7498/aps.64.044102
    [11] 陈雪梅, 张静, 易兴文, 曾登科, 杨合明, 邱昆. 基于数字相干叠加的相干光正交频分复用系统中光纤非线性容忍性研究.  , 2015, 64(14): 144203. doi: 10.7498/aps.64.144203
    [12] 姜珊珊, 刘艳, 邢尔军. 低差分模式时延少模光纤的有限元分析及设计.  , 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [13] 徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫. 具有四模式的低串扰及大群时延多芯微结构光纤的设计.  , 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [14] 张亚妮. 低损耗低非线性高负色散光子晶体光纤的优化设计.  , 2012, 61(8): 084213. doi: 10.7498/aps.61.084213
    [15] 谭中伟, 曹继红, 陈 勇, 刘 艳, 宁提纲, 简水生. 低串扰的多波长光纤光栅色散补偿器.  , 2007, 56(1): 274-279. doi: 10.7498/aps.56.274
    [16] 沈守枫. 低维非线性系统的一般多线性变量分离方法和局域激发模式.  , 2006, 55(3): 1011-1015. doi: 10.7498/aps.55.1011
    [17] 王正平, 滕 冰, 杜晨林, 许心光, 傅 琨, 许贵宝, 王继扬, 邵宗书. 低对称性非线性光学晶体BIBO的倍频性质.  , 2003, 52(9): 2176-2184. doi: 10.7498/aps.52.2176
    [18] 郭儒, 李乙钢, 潘士宏. 增强的串级非线性.  , 2001, 50(6): 1087-1091. doi: 10.7498/aps.50.1087
    [19] 方前锋. 低应力振幅下非线性滞弹性内耗峰(P′1峰)的数值分析.  , 1997, 46(3): 536-543. doi: 10.7498/aps.46.536
    [20] 李大丰, 马中芳, 陈激. 低杂波有质动力的非线性二维效应.  , 1982, 31(2): 170-179. doi: 10.7498/aps.31.170
计量
  • 文章访问数:  5142
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 修回日期:  2020-12-30
  • 上网日期:  2021-05-09
  • 刊出日期:  2021-05-20

/

返回文章
返回
Baidu
map