-
Aiming at the phenomenon of single measurement parameters and low sensitivity of most Mach-Zehnder sensors based on fiber core mismatch, in this paper we design and build a Mach-Zehnder sensor based on single-mode-no-core-single-mode-no-core-single-mode fiber structure, which can be used to measure refractive index and temperature simultaneously. In this sensor, two no-core optical fiber serve as input and output couplers, the intermediate single-mode is used as a sensing arm. Using finite element simulation and theoretical analysis, the optimal length of the coupler and the sensing arm are determined to be 15 mm. High-order modes excited by no-core optical fiber propagate through the cladding of single-mode fiber, which is affected by the ambient refractive index and temperature because of the influence of the evanescent filed. Trough of different interference orders of transmission spectrum is selected as a research object to realize the simultaneous measurement of refractive index and temperature by using sensitivity coefficient matrix. After the further Fourier transform of the transmission spectrum, the frequency of the main mode that interferes with the fundamental mode is analyzed from the spectrogram to be 0.00098 nm–1. Because of the influence of temperature on the refractive index of water during temperature sensitivity measurement, temperature sensitivity formula and water temperature coefficient are introduced to perform temperature compensation to eliminate the cross sensitivity. In this paper, the 10 mm and 15 mm sensing arms are selected for refractive index comparison experiment, and the temperature experiment is focused on the sensing arm with an optimal length of 15 mm. The experimental results show that the transmission spectrum is blue-shifted with the increase of refractive index in a refractive index range of 1.333–1.397, and the transmission spectrum is red-shifted with the increase of temperature in a temperature range from 30 ℃ to 70 ℃. The refractive index and temperature sensitivity of the interference valley near 1545 nm are –153.89 nm/RIU and 0.166 nm/℃, respectively; the refractive index and temperature sensitivity of the interference valley near 1570 nm are –202.74 nm/RIU and 0.183 nm/℃, respectively. The experimental results are consistent with the theoretical analyses. Compared with the sensor of the same type, this sensor can still maintain high sensitivity while achieving simultaneous measurement of refractive index and temperature, and has a simple structure, which has a good application prospect in biomedical and other aspects.
-
Keywords:
- Mach-Zehnder sensor /
- core diameter mismatch /
- refractive index and temperature /
- simultaneous measurement
[1] Tong R J, Zhao Y, Chen M Q, Peng Y 2019 Opt. Fiber Technol. 48 242Google Scholar
[2] Wang Y L, Liu Y Q, Zou F, Jiang C, Mou C B, Wang T Y 2019 Sensors 19 2263Google Scholar
[3] Hooda B, Rastogi V 2018 Optik 170 237Google Scholar
[4] Zhang C B, Ning T G, Li J, Pei L, Li C, Lin H 2017 Opt. Fiber Technol. 33 71Google Scholar
[5] Semwal V, Gupta B D 2019 Sens. Actuators, B 283 632Google Scholar
[6] Zubiate P, Zamarreno C R, Villar I D, Matias I R, Arregui F J 2016 Sens. Actuators, B 231 484Google Scholar
[7] Luo Y, Lei X Q, Shi F Q, Peng B J 2018 Optik 174 252Google Scholar
[8] 卜胜利, 汤佳莉, 刘志恒, 罗龙锋 2015 光子学报 44 1206002Google Scholar
Pu S L, Tang J L, Liu Z H, Luo L F 2015 Acta Photon. Sin. 44 1206002Google Scholar
[9] Wang F, Pang K B, Ma T, Wang X, Liu Y F 2020 Opt. Laser Technol. 130 106333Google Scholar
[10] Jiao T, Meng H Y, Deng S Y, Liu S, Wang X J, Wei Z C, Wang F Q, Tan C H, Huang X G 2019 Opt. Laser Technol. 111 612Google Scholar
[11] Liu W, Wu X Q, Zhang G, Li S L, Zuo C, Fang S S, Yu B L 2020 Opt. Fiber Technol. 54 102101Google Scholar
[12] Wang L Q, Yang L, Zhang C, Miao C Y, Zhao J F, Xu W 2019 Opt. Laser Technol. 109 193Google Scholar
[13] Tong Z R, Zhong Y M, Wang X, Zhang W H 2018 Opt. Commun. 421 1Google Scholar
[14] 张傲岩, 黄会玲, 江超, 董航宇, 王解, 刘昌宁, 孙四梅, 胡荟灵 2017 光电子·激光 30 1017Google Scholar
Zhang A Y, Huang H L, Jiang C, Dong H Y, Wang X, Liu C Y, Sun S M, Hu H L 2017 J. Optoelectron. Lasers 30 1017Google Scholar
[15] Wu Q, Semenova Y, Wang P F, Farrell G 2011 Opt. Express 19 7937Google Scholar
[16] 刘敏, 冯德玖, 冯文林 2019 光学学报 39 1006007Google Scholar
Liu M, Feng D J, Feng W L 2019 Acta Opt. Sin. 39 1006007Google Scholar
[17] 程君妮 2018 67 024212Google Scholar
Cheng J N 2018 Acta Phys. Sin. 67 024212Google Scholar
[18] 李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭 2013 62 214209Google Scholar
Li H D, Fu H W, Shao M, Zhao N, Qiao X G, Liu Y G, Li Y, Yan X 2013 Acta Phys. Sin. 62 214209Google Scholar
[19] 王旗, 邹辉, 韦玮 2017 光学学报 37 1006005Google Scholar
Wang Q, Zou H, Wei W 2017 Acta Opt. Sin. 37 1006005Google Scholar
[20] Choi H Y, Kim M J, Lee B H 2007 Opt. Express 15 5711Google Scholar
[21] 彭星玲, 茶映鹏, 张华, 李玉龙 2018 光子学报 47 1106006Google Scholar
Peng X L, Cha Y P, Zhang H, Li Y L 2018 Acta Photon. Sin. 47 1106006Google Scholar
[22] Wang H H, Meng H Y, Xiong R, Wang Q H, Hung B, Zhang X, Yu W, Tan C H, Huang X G 2016 Opt. Commun. 364 191Google Scholar
[23] Yan J H, Zhang A P, Shao L Y, Ding J F, He S L 2007 IEEE Sens. J. 7 1360Google Scholar
-
表 1 同步测量折射率和温度的马赫-曾德尔传感器的性能比较
Table 1. Performance comparison of Mach-Zehnder sensors with simultaneous measurement of refractive index and temperature.
-
[1] Tong R J, Zhao Y, Chen M Q, Peng Y 2019 Opt. Fiber Technol. 48 242Google Scholar
[2] Wang Y L, Liu Y Q, Zou F, Jiang C, Mou C B, Wang T Y 2019 Sensors 19 2263Google Scholar
[3] Hooda B, Rastogi V 2018 Optik 170 237Google Scholar
[4] Zhang C B, Ning T G, Li J, Pei L, Li C, Lin H 2017 Opt. Fiber Technol. 33 71Google Scholar
[5] Semwal V, Gupta B D 2019 Sens. Actuators, B 283 632Google Scholar
[6] Zubiate P, Zamarreno C R, Villar I D, Matias I R, Arregui F J 2016 Sens. Actuators, B 231 484Google Scholar
[7] Luo Y, Lei X Q, Shi F Q, Peng B J 2018 Optik 174 252Google Scholar
[8] 卜胜利, 汤佳莉, 刘志恒, 罗龙锋 2015 光子学报 44 1206002Google Scholar
Pu S L, Tang J L, Liu Z H, Luo L F 2015 Acta Photon. Sin. 44 1206002Google Scholar
[9] Wang F, Pang K B, Ma T, Wang X, Liu Y F 2020 Opt. Laser Technol. 130 106333Google Scholar
[10] Jiao T, Meng H Y, Deng S Y, Liu S, Wang X J, Wei Z C, Wang F Q, Tan C H, Huang X G 2019 Opt. Laser Technol. 111 612Google Scholar
[11] Liu W, Wu X Q, Zhang G, Li S L, Zuo C, Fang S S, Yu B L 2020 Opt. Fiber Technol. 54 102101Google Scholar
[12] Wang L Q, Yang L, Zhang C, Miao C Y, Zhao J F, Xu W 2019 Opt. Laser Technol. 109 193Google Scholar
[13] Tong Z R, Zhong Y M, Wang X, Zhang W H 2018 Opt. Commun. 421 1Google Scholar
[14] 张傲岩, 黄会玲, 江超, 董航宇, 王解, 刘昌宁, 孙四梅, 胡荟灵 2017 光电子·激光 30 1017Google Scholar
Zhang A Y, Huang H L, Jiang C, Dong H Y, Wang X, Liu C Y, Sun S M, Hu H L 2017 J. Optoelectron. Lasers 30 1017Google Scholar
[15] Wu Q, Semenova Y, Wang P F, Farrell G 2011 Opt. Express 19 7937Google Scholar
[16] 刘敏, 冯德玖, 冯文林 2019 光学学报 39 1006007Google Scholar
Liu M, Feng D J, Feng W L 2019 Acta Opt. Sin. 39 1006007Google Scholar
[17] 程君妮 2018 67 024212Google Scholar
Cheng J N 2018 Acta Phys. Sin. 67 024212Google Scholar
[18] 李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭 2013 62 214209Google Scholar
Li H D, Fu H W, Shao M, Zhao N, Qiao X G, Liu Y G, Li Y, Yan X 2013 Acta Phys. Sin. 62 214209Google Scholar
[19] 王旗, 邹辉, 韦玮 2017 光学学报 37 1006005Google Scholar
Wang Q, Zou H, Wei W 2017 Acta Opt. Sin. 37 1006005Google Scholar
[20] Choi H Y, Kim M J, Lee B H 2007 Opt. Express 15 5711Google Scholar
[21] 彭星玲, 茶映鹏, 张华, 李玉龙 2018 光子学报 47 1106006Google Scholar
Peng X L, Cha Y P, Zhang H, Li Y L 2018 Acta Photon. Sin. 47 1106006Google Scholar
[22] Wang H H, Meng H Y, Xiong R, Wang Q H, Hung B, Zhang X, Yu W, Tan C H, Huang X G 2016 Opt. Commun. 364 191Google Scholar
[23] Yan J H, Zhang A P, Shao L Y, Ding J F, He S L 2007 IEEE Sens. J. 7 1360Google Scholar
Catalog
Metrics
- Abstract views: 7879
- PDF Downloads: 221
- Cited By: 0