-
在太赫兹(THz)波与材料相互作用的研究中, 传统的太赫兹时域光谱(terahertz time-domain spectroscopy, THz-TDS)通常仅探测某一偏振方向的脉冲THz波在与待测样品作用前后的幅值信息和相位信息的变化. 然而对于各向异性、手性特征等材料的检测中, 仅有样品的幅值和相位信息并不能给出样品物质完整的内在结构. 各向异性、手性物质对不同偏振态的脉冲THz是非常敏感的, 要通过THz光谱来反映这些手性物质的构型、构象等信息, 就必须探测脉冲THz波作用样品前后的振幅、相位和偏振态. 本文提出的脉冲THz波全息探测器(pulsed terahertz holographic detector, PTHD)由相互垂直的光电导天线阵元组成, 可以通过一次扫描检测出脉冲THz电场在任意方向的正交分量, 从而可同时检测出脉冲THz波作用样品前后的振幅、相位和偏振态的变化, 故称为脉冲THz波全息探测器. 实验和理论分析都验证了PTHD测量脉冲THz波偏振态的可靠性. 同时, 本文还利用响应矩阵分析了PTHD在0.1—2.2 THz光谱范围内具有良好的对称性.In the study of the interaction of terahertz (THz) wave with material, the traditional THz time-domain spectroscopy (THz-TDS) usually only detects the changes in amplitude and phase information of pulsed THz in a certain polarization direction before and after the interaction with the sample to be tested. However, in the detection of material such as anisotropic material and chiral material, only the amplitude and phase information of the sample cannot give the complete internal structure of the sample material. Anisotropic material and chiral material are very sensitive to pulsed THz of different polarization states. In order to reflect the configurations and conformations of these chiral substances through THz spectrum, it is necessary to detect the amplitude, phase and polarization state of the sample before and after pulse THz waves. The pulsed terahertz holographic detector (PTHD) in this work is composed of photoconductive antenna elements that are perpendicular to each other. The quadrature component of the pulsed THz electric field in any direction can be detected by one-time scanning, so that the changes in amplitude, phase and polarization state before and after the pulsed THz wave acts on the sample can be detected at the same time, so it is called pulsed THz wave holographic detection. Both experiments and theoretical analyses verify the reliability of the PTHD for measuring the polarization state of pulsed THz waves. At the same time, the response matrix is used to analyze that the PTHD has good symmetry in a spectral range of 0.1–2.2 THz.
-
Keywords:
- terahertz waves /
- state of polarization /
- response matrix /
- degree of polarization
[1] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar
[2] Zimdars D, White J S 2004 Terahertz for Military and Security Applications II Orlando, Florida, United States, April 12–16, 2004 pp78–83
[3] Hoshina H, Sasaki Y, Hayashi A, Otani C, Kawase K 2009 Appl. Spectrosc. 63 81Google Scholar
[4] Kawase K, Shibuya T, Hayashi S I, Suizu K 2010 C. R. Phys. 11 510Google Scholar
[5] Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266Google Scholar
[6] Ok G, Park K, Chun H S, Chang H J, Lee N, Choi S W 2015 Biomed. Opt. Express 6 1929Google Scholar
[7] Shen F, Ying Y B 2009 Spectrosc. Spectr. Anal. 29 1445Google Scholar
[8] Stoik C D, Bohn M J, Blackshire J L 2008 Opt. Express 16 17039Google Scholar
[9] Zhong S C 2019 Front. Mech. Eng. 14 273Google Scholar
[10] Tao Y H, Fitzgerald A J, Wallace V P 2020 Sensors 20 712Google Scholar
[11] Takahashi M 2014 Crystals 4 74Google Scholar
[12] Menikh A, Mickan S P, Liu H, MacColl R, Zhang X C 2004 Biosens. Bioelectron. 20 658Google Scholar
[13] Penkov N V, Yashin V A, Belosludtsev K N 2021 Appl. Spectrosc. 75 189Google Scholar
[14] Smith P R, Auston D H, Nuss M C 1988 IEEE J. Quantum Electron. 24 255Google Scholar
[15] Lu X, Zhang X C 2012 Phys. Rev. Lett. 108 123903Google Scholar
[16] Zhang L, Zhong H, Deng C, Zhang C, Zhao Y 2009 Appl. Phys. Lett. 94 211106Google Scholar
[17] Choi W J, Yano K, Cha M, Colombari F M, Kim J Y, Wang Y, Lee S H, Sun K, Kruger J M, de Moura A F 2022 Nat. Photonics 16 366Google Scholar
[18] Makabe H, Hirota Y, Tani M, Hangyo M 2007 Opt. Express 15 11650Google Scholar
[19] Bulgarevich D S, Watanabe M, Shiwa M, Niehues G, Nishizawa S, Tani M 2014 Opt. Express 22 10332Google Scholar
[20] Niehues G, Funkner S, Bulgarevich D S, Tsuzuki S, Furuya T, Yamamoto K, Shiwa M, Tani M 2015 Opt. Express 23 16184Google Scholar
[21] Shi W, Wang Z Q, Hou L, Wang H Q, Wu M L, Li C F 2021 Front. Phys. 9 751128Google Scholar
[22] Shi W, Wang Z, Li C, Hou L, Pan Y 2022 Front. Phys. 10 850770Google Scholar
[23] Bulgarevich D S, Shiwa M, Niehues G, Tani M 2015 IEEE Trans. Terahertz Sci. Technol. 5 1097Google Scholar
[24] Rodger A, Nordén B 1997 Circular Dichroism and Linear Dichroism (Vol. 1) (New York: Oxford University Press) pp15–44
-
图 2 PTHD在不同角度下天线A (a)和天线B (b) 的THz电场响应; (c) 天线阵元A, B响应的THz电场振幅的拟合及THz信号幅值的拟合; (d) 天线A响应时域信号的傅里叶变换
Fig. 2. The THz electric field responses of antenna A (a) and antenna B (b) of the PTHD at different angles; (c) the fitting of the THz electric field amplitudes responded by the antenna A and B and the fitting of the THz signal amplitudes; (d) Fourier transform of the time domain signal received by antenna A.
图 3 (a) 水平和竖直偏振的THz时域信号; (b) 图(a)绿色圆圈部分的THz脉冲的空间轨迹; 与频率相关的(c) DOP和(d) THz电场方位角
Fig. 3. (a) THz time domain signal of horizontal and vertical polarization; (b) spatial trajectories of THz pulses in the green circle part of panel (a); frequency-dependent (c) DOP and (d) THz electric field orientation angles
-
[1] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar
[2] Zimdars D, White J S 2004 Terahertz for Military and Security Applications II Orlando, Florida, United States, April 12–16, 2004 pp78–83
[3] Hoshina H, Sasaki Y, Hayashi A, Otani C, Kawase K 2009 Appl. Spectrosc. 63 81Google Scholar
[4] Kawase K, Shibuya T, Hayashi S I, Suizu K 2010 C. R. Phys. 11 510Google Scholar
[5] Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266Google Scholar
[6] Ok G, Park K, Chun H S, Chang H J, Lee N, Choi S W 2015 Biomed. Opt. Express 6 1929Google Scholar
[7] Shen F, Ying Y B 2009 Spectrosc. Spectr. Anal. 29 1445Google Scholar
[8] Stoik C D, Bohn M J, Blackshire J L 2008 Opt. Express 16 17039Google Scholar
[9] Zhong S C 2019 Front. Mech. Eng. 14 273Google Scholar
[10] Tao Y H, Fitzgerald A J, Wallace V P 2020 Sensors 20 712Google Scholar
[11] Takahashi M 2014 Crystals 4 74Google Scholar
[12] Menikh A, Mickan S P, Liu H, MacColl R, Zhang X C 2004 Biosens. Bioelectron. 20 658Google Scholar
[13] Penkov N V, Yashin V A, Belosludtsev K N 2021 Appl. Spectrosc. 75 189Google Scholar
[14] Smith P R, Auston D H, Nuss M C 1988 IEEE J. Quantum Electron. 24 255Google Scholar
[15] Lu X, Zhang X C 2012 Phys. Rev. Lett. 108 123903Google Scholar
[16] Zhang L, Zhong H, Deng C, Zhang C, Zhao Y 2009 Appl. Phys. Lett. 94 211106Google Scholar
[17] Choi W J, Yano K, Cha M, Colombari F M, Kim J Y, Wang Y, Lee S H, Sun K, Kruger J M, de Moura A F 2022 Nat. Photonics 16 366Google Scholar
[18] Makabe H, Hirota Y, Tani M, Hangyo M 2007 Opt. Express 15 11650Google Scholar
[19] Bulgarevich D S, Watanabe M, Shiwa M, Niehues G, Nishizawa S, Tani M 2014 Opt. Express 22 10332Google Scholar
[20] Niehues G, Funkner S, Bulgarevich D S, Tsuzuki S, Furuya T, Yamamoto K, Shiwa M, Tani M 2015 Opt. Express 23 16184Google Scholar
[21] Shi W, Wang Z Q, Hou L, Wang H Q, Wu M L, Li C F 2021 Front. Phys. 9 751128Google Scholar
[22] Shi W, Wang Z, Li C, Hou L, Pan Y 2022 Front. Phys. 10 850770Google Scholar
[23] Bulgarevich D S, Shiwa M, Niehues G, Tani M 2015 IEEE Trans. Terahertz Sci. Technol. 5 1097Google Scholar
[24] Rodger A, Nordén B 1997 Circular Dichroism and Linear Dichroism (Vol. 1) (New York: Oxford University Press) pp15–44
计量
- 文章访问数: 4139
- PDF下载量: 100
- 被引次数: 0