搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器学习在光电子能谱中的应用及展望

邓祥文 伍力源 赵锐 王嘉鸥 赵丽娜

引用本文:
Citation:

机器学习在光电子能谱中的应用及展望

邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜

Application and prospect of machine learning in photoelectron spectroscopy

Deng Xiang-Wen, Wu Li-Yuan, Zhao Rui, Wang Jia-Ou, Zhao Li-Na
PDF
HTML
导出引用
  • 光电子能谱是一项在物质科学中被广泛应用的表征技术. 尤其是角分辨光电子能谱 (ARPES), 可以直接给出材料体系内电子的能量-动量色散关系和费米面结构, 是研究多体相互作用和关联量子材料的利器. 随着先进 ARPES如时间分辨 ARPES, Nano-ARPES 等技术的不断发展, 以及同步辐射装置的更新换代, 将会产生越来越多的高通量实验数据. 因此, 探索准确, 高效, 同时能挖掘深层物理信息的数据处理方法变得愈发迫切. 由于机器学习天然具有的自动化处理复杂高维数据能力, 推动了包括 ARPES 在内的诸多领域的变革和技术创新. 本文综述了机器学习在光电子能谱中的应用, 包括对光谱数据进行降噪, 进行电子结构分析, 化学组成分析, 以及结合理论计算获得的电子结构信息进行光谱预测. 进一步, 展望了更多机器学习算法在光电子能谱中的应用, 最终有望形成更加自动化的数据采集、预处理系统以及数据分析的工作流, 推动光电子能谱技术的发展, 从而推进量子材料和凝聚态物理前沿研究.
    Photoelectron spectroscopy serves as a prevalent characterization technique in the field of materials science. Especially, angle-resolved photoelectron spectroscopy (ARPES) provides a direct method for determining the energy-momentum dispersion relationship and Fermi surface structure of electrons in a material system, therefore ARPES has become a potent tool for investigating many-body interactions and correlated quantum materials. With the emergence of technologies such as time-resolved ARPES and nano-ARPES, the field of photoelectron spectroscopy continues to advance. Meanwhile, the development of synchrotron radiation facilities has led to an increase of high-throughput and high-dimensional experimental data. This highlights the urgency for developing more efficient and accurate data processing methods, as well as extracting deeper physical information. In light of these developments, machine learning will play an increasingly significant role in various fields, including but not limited to ARPES.This paper reviews the applications of machine learning in photoelectron spectroscopy, mainly including the following three aspects.1. Data Denoising  Machine learning can be utilized for denoising photoelectron spectroscopy data. The denoising process via machine learning algorithms can be divided into two methods. Neither of the two methods need manual data annotation. The first method is to use noise generation algorithms to simulate experimental noise, so as to obtain effective low signal-to-noise ratio data pair to high signal-to-noise ratio data pair. And the second method is to extract noise and clean spectral data.2. Electronic Structure and Chemical Composition Analysis Machine learning can be used for analyzing electronic structure and chemical composition. (Angle-resolved) photoelectron spectroscopy contains abundant information about material structure. Information such as energy band structure, self-energy, binding energy, and other condensed matter data can be rapidly acquired through machine learning schemes.3. Prediction of Photoelectron Spectra The electronic structure information obtained by combining first-principles calculation can also predict the photoelectron spectra. The rapid acquisition of photoelectron spectrum data through machine learning algorithms also holds significance for material design.Photoelectron spectroscopy holds significant importance in the study of condensed matter physics. In the context of the development of synchrotron radiation, the construction of an automated data acquisition and analysis system can play a pivotal role in studying condensed matter physics. In addition, adding more physical constraints to the machine learning model will improve the interpretability and accuracy of the model. There exists a close relationship between photoelectron spectrum and first-principles calculations of electronic structure properties. The integration of these two through machine learning is anticipated to significantly contribute to the study of electronic structure properties. Furthermore, as machine learning algorithms continue to evolve, the application of more advanced machine learning algorithms in photoelectron spectrum research is expected. Building automated data acquisition and analysis systems, designing comprehensive workflows based on machine learning and first-principles methods, and integrating new machine learning techniques will help accelerate the progress of photoelectron spectroscopy experiments and facilitate the analysis of electronic structure properties and microscopic physical mechanisms, thereby advancing the frontier research in quantum materials and condensed matter physics.
  • 图 1  (a) 近年来光电子能谱相关文章的发文数量; (b) 光电子能谱常见应用领域(来源: web of science - 以光电子能谱相关关键词搜索获得的结果); (c) 光电子能谱常见的研究体系

    Fig. 1.  (a) The number of papers related to photoelectron spectroscopy in recent years; (b) Common application fields of photoelectron spectroscopy (Source: web of science - Results obtained by searching for keywords related to photoelectron spectroscopy); (c) Common research systems of photoelectron spectroscopy.

    图 2  (a)光电子激发和采集示意图; (b) 光电子强度和电子态密度的关系; (c) 材料内部光电子平均自由程与光子能量的关系. (b)引用自参考文献[14], 版权属于 Springer Nature; (c)引用自参考文献[35], 版权属于 John Wiley and Sons

    Fig. 2.  (a) Photoelectron excitation and collection schematics; (b) Relationship between photoelectron intensity and electron density of states; (c) Relationship between the average free path of photoelectrons inside the material and photon energy. (b) reprinted with permission from Ref. [14], copyright 2019 by the Springer Nature; (c) reprinted with permission from Ref. [35], copyright 1979 by the John Wiley and Sons.

    图 3  机器学习在光电子能谱中的作用. 机器学习的应用主要分为四个方面, 分别是对光电子能谱数据进行降噪; 加速元素分析; 提取光电子能谱中的物理信息, 如电子结构信息以及通过结合理论计算的结果预测材料的光电子能谱

    Fig. 3.  The role of machine learning in photoelectron spectroscopyThe application of machine learning is mainly divided into four aspects: noise reduction of photoelectron spectroscopy data; accelerated elemental analysis; the physical information in the photoelectron spectroscopy, such as the electronic structure information, is extracted and the photoelectron spectroscopy of the material is predicted by combining the results of theoretical calculations.

    图 4  光电子能谱数据降噪中的机器学习方法. 方法一: 生成噪声数据模拟实验噪声, 从而进行降噪网络的训练[60,61]; 方法二: 通过不同的网络分别提取噪声和干净的光谱数据, 然后将两者组合形成生成数据. 因此, 两种方法的损失函数都是通过评估生成数据与原始数据的相似性[57,62]

    Fig. 4.  Machine learning methods in noise reduction of photoelectron spectroscopy data. Method 1: noise data is generated to simulate the noise, so as to train the noise reduction network[60,61]; method 2: Noise and clean spectral data are extracted by different networks, and then combined to form the generated data. Therefore, the loss function of both methods is to evaluate the similarity between the generated data and the original data[57,62].

    图 5  聚类数为8时 k-means 的结果, (a) 为不同簇数时, 每个簇的空间分布; (b) 为对每个簇中的簇成员进行平均得到的平均 EDC. 引用自参考文献[64], 版权属于 Springer Nature

    Fig. 5.  The results of k-means when the number of clusters is 8, (a) Spatial distribution of each of clusters for different number of clusters; (b) mean-EDCs obtained by averaging the cluster members in each cluster. Reprinted with permission from Ref. [64], copyright 2022 by the Springer Nature.

    图 6  (a) 马尔可夫随机场进行能带重建过程: 实验获得的 ARPES 数据经过预处理, 和第一性原理计算的初始值输入到马尔可夫随机场中, 得到的结果经过后处理便能形成按能带指数排列的光电发射色散面, 即能带结构; (b) 重建的 14 层价带; (c) 重建出的能带色散(红色线条)与在光电子能带映射数据的叠加. 引用自参考文献[69], 版权属于 Springer Nature

    Fig. 6.  (a) Band reconstruction process with Markov random field: The ARPES data obtained from the experiment are preprocessed, and the initial values of the first-principles calculation are input into the Markov random field. The obtained results are post-processed to form a photoelectric emission dispersion surface arranged exponentially according to the energy band, that is, the band structure; (b) The reconstructed 14-layer valence band; (c) The superposition of the reconstructed band dispersion (red line) and the data mapped in the photoelectron energy band. Reprinted with permission from Ref. [69], copyright 2022 by the Springer Nature.

    图 7  自能提取的机器学习的流程, 用于从实验观测的光电子谱函数 $ A({\boldsymbol{k}}, \omega) $ 中提取正常自能和反常自能. 引用自参考文献[73], 版权属于美国物理学会

    Fig. 7.  Flow chart of machine-learning procedure. It is used to extract normal self-energy $ {\boldsymbol{\Sigma}}_({\boldsymbol{k}}, \omega)^\text{nor} $ and anomalous self-energy $ {\boldsymbol{\Sigma}}_({\boldsymbol{k}}, \omega)^\text{ano} $ from the experimentally observed spectral function $ A({\boldsymbol{k}}, \omega) $. reprinted with permission from Ref. [73], copyright 2021 by the American Physical Society.

    图 8  使用原子位置平滑重叠和核岭回归预测结合能和XPS. 使用 SOAP 多体描述符处理 CHO 材料数据库获得的基于聚类的多维缩放图 (a); (b-d) 为 a-\ce{COx} 的 C 1s 谱. 其中浅灰色的 C 原子贡献了光谱中的浅灰色区域, 而深灰色的 C 原子贡献了光谱中的深灰色区域. 引用自参考文献[97], 版权属于美国化学会

    Fig. 8.  The smooth overlap of atomic positions and kernel ridge regression are used to predict the binding energy and XPS. Using SOAP multi-body descriptor to process the cluster-based multidimensional scaling map obtained from CHO material database (a); (b-d) are the C 1s spectra of a-\ce{COx}, the light gray C atoms contribute to the light gray region in the spectrum, while the dark gray C atoms contribute to the dark gray region in the spectrum. Reprinted with permission from Ref. [97], copyright 2022 by the American Chemical Society.

    图 9  (a) $ {\rm{InAs}}(001) \ \beta 2(2 \times 4) $ 俯视图和侧视图; (b), (c), (d) 分别为 $ {\rm{InAs}}(001) \ \beta 2(2 \times 4) $ 能带结构的 xy-unfolding, z-unfolding, bulk unfolding; (e) 为 $ {\rm{InAs}}(001) \ \beta 2(2 \times 4) $ 表面的布里渊区. 引用自参考文献[99], 版权属于 John Wiley and Sons

    Fig. 9.  (a) $ {\rm{InAs}}(001) \ \beta 2(2 \times 4) $ top view and side view; (b), (c), (d) are xy-unfolding, z-unfolding, bulk unfolding of $ {\rm{InAs}}(001) \ \beta 2(2 \times 4) $ band structure, respectively; (e) is the Brillouin zone of $ {\rm{InAs}}(001) \ \beta 2(2 \times 4) $ surface. Reprinted with permission from Ref. [99], copyright 2022 by the John Wiley and Sons.

    图 10  现有的以及未来可用于角分辨光电子能谱的机器学习方法

    Fig. 10.  Existing and future machine learning methods for angle-resolved photoelectron spectroscopy.

    Baidu
  • [1]

    Hoesch M, Greber T, Petrov V, Muntwiler M, Hengsberger M, Auwärter W, Osterwalder J 2002 J. Electron Spectrosc. Relat. Phenom. 124 263Google Scholar

    [2]

    Dil J H 2009 J. Phys.: Condes. Matter 21 403001Google Scholar

    [3]

    Yaji K, Harasawa A, Kuroda K, Toyohisa S, Nakayama M, Ishida Y, Fukushima A, Watanabe S, Chen C, Komori F, Shin S 2016 Rev. Sci. Instrum. 87 053111Google Scholar

    [4]

    Nordling C, Sokolowski E, Siegbahn K 1957 Phys. Rev. 105 1676Google Scholar

    [5]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473Google Scholar

    [6]

    Hashimoto M, He R H, Tanaka K, Testaud J P, Meevasana W, Moore R G, Lu D, Yao H, Yoshida Y, Eisaki H, Devereaux T P, Hussain Z, Shen Z X 2010 Nat. Phys. 6 414Google Scholar

    [7]

    Vishik I M, Hashimoto M, He R H, Lee W S, Schmitt F, Lu D, Moore R G, Zhang C, Meevasana W, Sasagawa T, Uchida S, Fujita K, Ishida S, Ishikado M, Yoshida Y, Eisaki H, Hussain Z, Devereaux T P, Shen Z X 2012 Proc. Natl. Acad. Sci. 109 18332Google Scholar

    [8]

    Ideta S, Johnston S, Yoshida T, Tanaka K, Mori M, Anzai H, Ino A, Arita M, Namatame H, Taniguchi M, Ishida S, Takashima K, Kojima K, Devereaux T, Uchida S, Fujimori A 2021 Phys. Rev. Lett. 127 217004Google Scholar

    [9]

    Gauvin-Ndiaye C, Setrakian M, Tremblay A M 2022 Phys. Rev. Lett. 128 087001Google Scholar

    [10]

    Maletz J, Zabolotnyy V B, Evtushinsky D V, Thirupathaiah S, Wolter A U B, Harnagea L, Yaresko A N, Vasiliev A N, Chareev D A, Böhmer A E, Hardy F, Wolf T, Meingast C, Rienks E D L, Büchner B, Borisenko S V 2014 Phys. Rev. B 89 220506Google Scholar

    [11]

    Yi M, Zhang Y, Shen Z X, Lu D 2017 npj Quantum Mater. 2 57Google Scholar

    [12]

    Cattelan M, Fox N A 2018 Nanomaterials 8 284Google Scholar

    [13]

    Sugawara K, Kusaka H, Kawakami T, Yanagizawa K, Honma A, Souma S, Nakayama K, Miyakawa M, Taniguchi T, Kitamura M, Horiba K, Kumigashira H, Takahashi T, Orimo S i, Toyoda M, Saito S, Kondo T, Sato T 2023 Nano Lett. 23 1673Google Scholar

    [14]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [15]

    Lv B, Qian T, Ding H 2019 Nat. Rev. Phys. 1 609Google Scholar

    [16]

    Zhong J, Yang M, Shi Z, Li Y, Mu D, Liu Y, Cheng N, Zhao W, Hao W, Wang J, Yang L, Zhuang J, Du Y 2023 Nat. Commun. 14 4964Google Scholar

    [17]

    Danzenbächer S, Vyalikh D V, Kummer K, Krellner C, Holder M, Höppner M, Kucherenko Y, Geibel C, Shi M, Patthey L, Molodtsov S L, Laubschat C 2011 Phys. Rev. Lett. 107 267601Google Scholar

    [18]

    Chang P Y, Erten O, Coleman P 2017 Nat. Phys. 13 794Google Scholar

    [19]

    Chen Q, Xu D, Niu X, Peng R, Xu H, Wen C, Liu X, Shu L, Tan S, Lai X, Zhang Y, Lee H, Strocov V, Bisti F, Dudin P, Zhu J X, Yuan H, Kirchner S, Feng D 2018 Phys. Rev. Lett. 120 066403Google Scholar

    [20]

    Zhang Y, Luo X, Feng W, Tan S, Hao Q, Zhang Q, Yuan D, Wang B, Liu Y, Liu Q, Wang X, Luo L, Zhu X, Chen Q, Lai X 2022 Phys. Rev. B 106 045133Google Scholar

    [21]

    Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006Google Scholar

    [22]

    Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G, Zhang C, Mou D, Wu Y, Huang L, Lee C C, Huang S M, Wang B, Bansil A, Jeng H T, Neupert T, Kaminski A, Lin H, Jia S, Zahid Hasan M 2015 Nat. Phys. 11 748Google Scholar

    [23]

    Liu Z K, Yang L X, Sun Y, Zhang T, Peng H, Yang H F, Chen C, Zhang Y, Guo Y, Prabhakaran D, Schmidt M, Hussain Z, Mo S K, Felser C, Yan B, Chen Y L 2016 Nat. Mater. 15 27Google Scholar

    [24]

    Belopolski I, Xu S Y, Sanchez D S, Chang G, Guo C, Neupane M, Zheng H, Lee C C, Huang S M, Bian G, Alidoust N, Chang T R, Wang B, Zhang X, Bansil A, Jeng H T, Lin H, Jia S, Hasan M Z 2016 Phys. Rev. Lett. 116 066802Google Scholar

    [25]

    Tanaka H, Telegin A V, Sukhorukov Y P, Golyashov V A, Tereshchenko O E, Lavrov A N, Matsuda T, Matsunaga R, Akashi R, Lippmaa M, Arai Y, Ideta S, Tanaka K, Kondo T, Kuroda K 2023 Phys. Rev. Lett. 130 186402Google Scholar

    [26]

    Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z, Jia C, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D, Moore R G, Hwang C C, Hwang C, Hussain Z, Chen Y, Ugeda M M, Liu Z, Xie X, Devereaux T P, Crommie M F, Mo S K, Shen Z X 2017 Nat. Phys. 13 683Google Scholar

    [27]

    Schmitt F, Kirchmann P S, Bovensiepen U, Moore R G, Rettig L, Krenz M, Chu J H, Ru N, Perfetti L, Lu D H, Wolf M, Fisher I R, Shen Z X 2008 Science 321 1649Google Scholar

    [28]

    Rohwer T, Hellmann S, Wiesenmayer M, Sohrt C, Stange A, Slomski B, Carr A, Liu Y, Avila L M, Kalläne M, Mathias S, Kipp L, Rossnagel K, Bauer M 2011 Nature 471 490Google Scholar

    [29]

    Wang Y, Hsieh D, Sie E, Steinberg H, Gardner D, Lee Y, Jarillo-Herrero P, Gedik N 2012 Phys. Rev. Lett. 109 127401Google Scholar

    [30]

    Ossiander M, Riemensberger J, Neppl S, Mittermair M, Schäffer M, Duensing A, Wagner M S, Heider R, Wurzer M, Gerl M, Schnitzenbaumer M, Barth J V, Libisch F, Lemell C, Burgdörfer J, Feulner P, Kienberger R 2018 Nature 561 374Google Scholar

    [31]

    Fan H 1945 Phys. Rev. 68 43Google Scholar

    [32]

    Berglund C N, Spicer W E 1964 Phys. Rev. 136 A1030Google Scholar

    [33]

    Damascelli A 2004 Phys. Scr. 2004 61

    [34]

    Strocov V 2003 J. Electron Spectrosc. Relat. Phenom. 130 65Google Scholar

    [35]

    Seah M P, Dench W 1979 Surf. Interface Anal. 1 2Google Scholar

    [36]

    Strocov V, Starnberg H, Nilsson P, Brauer H, Holleboom L 1997 Phys. Rev. Lett. 79 467Google Scholar

    [37]

    Strocov V N, Shi M, Kobayashi M, Monney C, Wang X, Krempasky J, Schmitt T, Patthey L, Berger H, Blaha P 2012 Phys. Rev. Lett. 109 086401Google Scholar

    [38]

    Leemann S, Liu S, Hexemer A, Marcus M, Melton C, Nishimura H, Sun C 2019 Phys. Rev. Lett. 123 194801Google Scholar

    [39]

    Goodman J, King M, Dolier E, Wilson R, Gray R, McKenna P 2023 High Power Laser Sci. Eng. 11 e34Google Scholar

    [40]

    Pan D, Fan J, Nie Z, Sun Z, Zhang J, Tong Y, He B, Song C, Kohmura Y, Yabashi M, Ishikawa T, Shen Y, Jiang H 2022 IUCrJ 9 223Google Scholar

    [41]

    Zhou Z, Li C, Bi X, Zhang C, Huang Y, Zhuang J, Hua W, Dong Z, Zhao L, Zhang Y, Dong Y 2023 npj Comput. Mater. 9 58Google Scholar

    [42]

    Asahara A, Morita H, Ono K, Mitsumata C, Yano M, Shoji T 2019 In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial In-telligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, vol. 33 of AAAI’19/IAAI’19/EAAI’19 (Honolulu, Hawaii, USA: AAAI), p 9410

    [43]

    Chang M C, Wei Y, Chen W R, Do C 2020 MRS Commun. 10 11Google Scholar

    [44]

    Belič I, Poniku B, Jenko M 2012 Surf. Interface Anal. 44 1141Google Scholar

    [45]

    Yoon T, Kim S W, Byun H, Kim Y, Carter C D, Do H 2023 Combust. Flame 248 112583Google Scholar

    [46]

    Planckaert N, Demeulemeester J, Laenens B, Smeets D, Meersschaut J, L’abbé C, Temst K, Van-tomme A 2010 J. Synchrot. Radiat. 17 86Google Scholar

    [47]

    Martini A, Guda S, Guda A, Smolentsev G, Algasov A, Usoltsev O, Soldatov M, Bugaev A, Rusalev Y, Lamberti C, Soldatov A 2020 Comput. Phys. Commun. 250 107064Google Scholar

    [48]

    Roch L M, Saikin S K, Hase F, Friederich P, Goldsmith R H, León S, Aspuru-Guzik A 2020 ACS Nano 14 6589Google Scholar

    [49]

    Scarborough N M, Godaliyadda G M D P, Ye D H, Kissick D J, Zhang S, Newman J A, Sheedlo M J, Chowdhury A U, Fischetti R F, Das C, Buzzard G T, Bouman C A, Simpson G J 2017 J. Synchrot. Radiat. 24 188Google Scholar

    [50]

    Ke T W, Brewster A S, Yu S X, Ushizima D, Yang C, Sauter N K 2018 J. Synchrot. Radiat. 25 655Google Scholar

    [51]

    Sullivan B, Archibald R, Azadmanesh J, Vandavasi V G, Langan P S, Coates L, Lynch V, Langan P 2019 J. Appl. Crystallogr. 52 854Google Scholar

    [52]

    Lolla S, Liang H, Kusne A G, Takeuchi I, Ratcliff W 2022 J. Appl. Crystallogr. 55 882Google Scholar

    [53]

    Boulle A, Debelle A 2023 Mach. Learn.: Sci. Technol. 4 015002Google Scholar

    [54]

    Zhao C, Yu W, Li L 2023 Mater. Des. 228 111828Google Scholar

    [55]

    Kopp R, Joseph J, Ni X, Roy N, Wardle B L 2022 Adv. Mater. 34 2107817Google Scholar

    [56]

    Hendriksen A A, Bührer M, Leone L, Merlini M, Vigano N, Pelt D M, Marone F, Di Michiel M, Batenburg K J 2021 Sci Rep 11 11895Google Scholar

    [57]

    Huang D, Liu J, Qian T, Yang Y F 2023 Sci. China Phys. Mech. Astron. 66 267011Google Scholar

    [58]

    Pelzer K, Schwarz N, Harder R 2021 J. Appl. Crystallogr. 54 523Google Scholar

    [59]

    Thakur R S, Chatterjee S, Yadav R N, Gupta L 2021 IEEE Access 9 93338Google Scholar

    [60]

    Kim Y, Oh D, Huh S, Song D, Jeong S, Kwon J, Kim M, Kim D, Ryu H, Jung J, Kyung W, Sohn B, Lee S, Hyun J, Lee Y, Kim Y, Kim C 2021 Rev. Sci. Instrum. 92 073901Google Scholar

    [61]

    Restrepo F, Zhao J, Chatterjee U 2022 Rev. Sci. Instrum. 93 065106Google Scholar

    [62]

    Liu J, Huang D, Yang Y f, Qian T 2023 Phys. Rev. B 107 165106Google Scholar

    [63]

    Sun E 2022 In 2022 IEEE MIT Undergraduate Research Technology Conference (URTC), vol. 96 (Cambridge, MA, USA: IEEE), p 1

    [64]

    Iwasawa H, Ueno T, Masui T, Tajima S 2022 npj Quantum Mater. 7 24Google Scholar

    [65]

    Melton C N, Noack M M, Ohta T, Beechem T E, Robinson J, Zhang X, Bostwick A, Jozwiak C, Koch R J, Zwart P H, Hexemer A, Rotenberg E 2020 Mach. Learn.: Sci. Technol. 1 045015Google Scholar

    [66]

    Ekahana S A, Winata G I, Soh Y, Tamai A, Milan R, Aeppli G, Shi M 2023 Mach. Learn.: Sci. Technol. 4 035021Google Scholar

    [67]

    Park S H, Park H, Lee H, Kim H S 2021 J. Korean Phys. Soc. 79 1199Google Scholar

    [68]

    Pielsticker L, Nicholls R L, DeBeer S, Greiner M 2023 Anal. Chim. Acta 1271 341433Google Scholar

    [69]

    Xian R P, Stimper V, Zacharias M, Dendzik M, Dong S, Beaulieu S, Schölkopf B, Wolf M, Rettig L, Carbogno C, Bauer S, Ernstorfer R 2023 Nat. Comput. Sci. 3 101

    [70]

    Norman M, Eschrig M, Kaminski A, Campuzano J 2001 Phys. Rev. B 64 184508Google Scholar

    [71]

    Zhang H, Pincelli T, Jozwiak C, Kondo T, Ernstorfer R, Sato T, Zhou S 2022 Nat. Rev. Method. Prim. 2 54Google Scholar

    [72]

    Iwasawa H, Yoshida Y, Hase I, Shimada K, Namatame H, Taniguchi M, Aiura Y 2013 Sci Rep 3 1930Google Scholar

    [73]

    Yamaji Y, Yoshida T, Fujimori A, Imada M 2021 Phys. Rev. Res. 3 043099Google Scholar

    [74]

    Hohenberg P, Kohn W 1964 Phys. Rev. 13 6

    [75]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [76]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [77]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [78]

    Zhu X, Louie S G 1991 Phys. Rev. B 43 14142Google Scholar

    [79]

    Zanolli Z, Fuchs F, Furthmüller J, von Barth U, Bechstedt F 2007 Phys. Rev. B 75 245121Google Scholar

    [80]

    Aryasetiawan F, Gunnarsson O 1998 Rep. Prog. Phys. 61 237Google Scholar

    [81]

    Reining L 2018 Wiley Interdiscip. Rev.-Comput. Mol. Sci. 8 e1344Google Scholar

    [82]

    Golze D, Dvorak M, Rinke P 2019 Front. Chem. 7 377Google Scholar

    [83]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [84]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [85]

    Yu M, Yang S, Wu C, Marom N 2020 npj Comput. Mater. 6 180Google Scholar

    [86]

    Harun K, Salleh N A, Deghfel B, Yaakob M K, Mohamad A A 2020 Results Phys. 16 102829Google Scholar

    [87]

    Cococcioni M, De Gironcoli S 2005 Phys. Rev. B 71 035105Google Scholar

    [88]

    Kulik H J, Cococcioni M, Scherlis D A, Marzari N 2006 Phys. Rev. Lett. 97 103001Google Scholar

    [89]

    Mosey N J, Carter E A 2007 Phys. Rev. B 76 155123Google Scholar

    [90]

    Mosey N J, Liao P, Carter E A 2008 J. Chem. Phys. 129 014103Google Scholar

    [91]

    Aryasetiawan F, Karlsson K, Jepsen O, Schönberger U 2006 Phys. Rev. B 74 125106Google Scholar

    [92]

    Miyake T, Aryasetiawan F 2008 Phys. Rev. B 77 085122Google Scholar

    [93]

    Şaşıoğlu E, Friedrich C, Blügel S 2011 Phys. Rev. B 83 121101Google Scholar

    [94]

    Setvin M, Franchini C, Hao X, Schmid M, Janotti A, Kaltak M, Van de Walle C G, Kresse G, Diebold U 2014 Phys. Rev. Lett. 113 086402Google Scholar

    [95]

    Falletta S, Pasquarello A 2022 npj Comput. Mater. 8 263Google Scholar

    [96]

    Tavadze P, Boucher R, Avendaño-Franco G, Kocan K X, Singh S, Dovale-Farelo V, Ibarra-Hernández W, Johnson M B, Mebane D S, Romero A H 2021 npj Comput. Mater. 7 182Google Scholar

    [97]

    Golze D, Hirvensalo M, Hernández-León P, Aarva A, Etula J, Susi T, Rinke P, Laurila T, Caro M A 2022 Chem. Mat. 34 6240Google Scholar

    [98]

    Sun Q, Xiang Y, Liu Y, Xu L, Leng T, Ye Y, Fortunelli A, Goddard Ⅲ W A, Cheng T 2022 J. Phys. Chem. Lett. 13 8047Google Scholar

    [99]

    Yang S, Schröter N B M, Strocov V N, Schuwalow S, Rajpalk M, Ohtani K, Krogstrup P, Winkler G W, Gukelberger J, Gresch D, Aeppli G, Lutchyn R M, Marom N 2022 Adv. Quantum Technol. 5 2100033Google Scholar

    [100]

    Jardine M J A, Dardzinski D, Yu M, Purkayastha A, Chen A H, Chang Y H, Engel A, Strocov V N, Hocevar M, Palmstrom C, Frolov S M, Marom N 2023 ACS Appl. Mater. Interfaces 15 16288Google Scholar

    [101]

    Bubert H, Hillig H 2000 Microchim. Acta 133 95Google Scholar

    [102]

    Kim B, Kim W S 2007 Microelectron. Eng. 84 584Google Scholar

    [103]

    Kim B, Kim G T, Lee H J 2008 Mater. Manuf. Process. 23 528Google Scholar

    [104]

    Kim B, Kim J, Choi S 2009 Expert Syst. Appl. 36 11347Google Scholar

    [105]

    Englert T, Gruber F, Stiedl J, Green S, Jacob T, Rebner K, Grählert W 2021 Sensors 21 5595Google Scholar

    [106]

    Drera G, Kropf C M, Sangaletti L 2020 Mach. Learn.: Sci. Technol. 1 015008Google Scholar

    [107]

    Baker N, Alexander F, Bremer T, Hagberg A, Kevrekidis Y, Najm H, Parashar M, Patra A, Sethian J, Wild S, Willcox K, Lee S 2019 Workshop report on basic research needs for scientific machine learning: Core technologies for artificial intelligence. Report, USDOE Office of Science (SC), Wash-ington, DC (United States

    [108]

    Choudhary K, DeCost B, Chen C, Jain A, Tavazza F, Cohn R, Park C W, Choudhary A, Agrawal A, Billinge S J L, Holm E, Ong S P, Wolverton C 2022 npj Comput. Mater. 8 59Google Scholar

    [109]

    Cranmer M, Sanchez-Gonzalez A, Battaglia P, Xu R, Cranmer K, Spergel D, Ho S 2020 In Pro-ceedings of the 34 th International Conference on Neural Information Processing Systems, NIPS ’20 (Vancouver, BC, Canada: Curran Associates Inc.), p 17429

    [110]

    Cranmer M, Greydanus S, Hoyer S, Battaglia P, Spergel D, Ho S 2020 arXiv: 2003.04630 [physics.comp-ph]

    [111]

    Samarakoon A M, Laurell P, Balz C, Banerjee A, Lampen-Kelley P, Mandrus D, Nagler S E, Okamoto S, Tennant D A 2022 Phys. Rev. Res. 4 L022061Google Scholar

    [112]

    Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A, Müller K R 2018 J. Chem. Phys. 148 241722Google Scholar

    [113]

    Sobral J A, Obernauer S, Turkel S, Pasupathy A N, Scheurer M S 2023 Nat. Commun. 14 5012Google Scholar

    [114]

    Chen Z, Andrejevic N, Drucker N C, Nguyen T, Xian R P, Smidt T, Wang Y, Ernstorfer R, Tennant D A, Chan M, Li M 2021 Chem. Phys. Rev. 2 031301Google Scholar

    [115]

    Doucet M, Samarakoon A M, Do C, Heller W T, Archibald R, Tennant D A, Proffen T, Granroth G E 2020 Mach. Learn.: Sci. Technol. 2 023001

    [116]

    Chitturi S R, Ratner D, Walroth R C, Thampy V, Reed E J, Dunne M, Tassone C J, Stone K H 2021 J. Appl. Crystallogr. 54 1799Google Scholar

    [117]

    Matsumura T, Nagamura N, Akaho S, Nagata K, Ando Y 2019 Sci. Technol. Adv. Mater. 20 733Google Scholar

    [118]

    Xi B, Tse K F, Kok T F, Chan H M, Chan M K, Chan H Y, Clinton Wong K Y, Robin Yuen S H, Zhu J 2022 J. Phys. Chem. C 126 12264Google Scholar

    [119]

    Bergstra J, Bengio Y 2012 J. Mach. Learn. Res. 13 281

    [120]

    Bergstra J, Bardenet R, Bengio Y, Kégl B 2011 In Proceedings of the 24 th International Conference on Neural Information Processing Systems, vol. 24 of NIPS’11 (Granada, Spain: Curran Associates, Inc.), p 2546

    [121]

    Gardner J R, Kusner M J, Xu Z E, Weinberger K Q, Cunningham J P 2014 In Proceedings of the 31st International Conference on International Conference on Machine Learning, vol. 32 of ICML’14 (Beijing, China: JMLR.org), p Ⅱ–937

    [122]

    Bergstra J, Yamins D, Cox D 2013 In Proceedings of the 30 th International Conference on Machine Learning, vol. 28 of ICML’13 (Atlanta, GA, USA: JMLR.org), p I–115

    [123]

    Akiba T, Sano S, Yanase T, Ohta T, Koyama M 2019 In Proceedings of the 25 th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, vol. 18 of KDD19 (Anchorage, AK, USA: ACM), p 2623

    [124]

    Kvasnicka V, Sklenak S, Pospichal J 1992 J. Chem. Inf. Comput. Sci. 32 742Google Scholar

    [125]

    Simine L, Allen T C, Rossky P J 2020 Proc. Natl. Acad. Sci. 117 13945Google Scholar

    [126]

    Urbina F, Batra K, Luebke K J, White J D, Matsiev D, Olson L L, Malerich J P, Hupcey M A, Madrid P B, Ekins S 2021 Anal. Chem. 93 16076Google Scholar

    [127]

    Wu X, Zhao Z, Tian R, Niu Y, Gao S, Liu H 2021 Spectroc. Acta Pt. A: Molec. Biomolec. Spectr. 244 118841Google Scholar

    [128]

    Scarselli F, Gori M, Tsoi A C, Hagenbuchner M, Monfardini G 2009 IEEE Trans. Neural Netw. 20 61Google Scholar

    [129]

    Coley C W, Jin W, Rogers L, Jamison T F, Jaakkola T S, Green W H, Barzilay R, Jensen K F 2019 Chem. Sci. 10 370Google Scholar

    [130]

    Stärk H, Beaini D, Corso G, Tossou P, Dallago C, Günnemann S, Lió P 2022 In Proceedings of the 39 th International Conference on Machine Learning, vol. 162 of Proceedings of Machine Learning Research. PMLR (Baltimore, MD, USA: PMLR), p 20479

    [131]

    Xie T, Grossman J C 2018 Phys. Rev. Lett. 120 145301Google Scholar

    [132]

    Gao W, Mahajan S P, Sulam J, Gray J J 2020 Patterns 1 100142Google Scholar

    [133]

    Choudhary K, DeCost B 2021 npj Comput. Mater. 7 185Google Scholar

    [134]

    Bang K, Yeo B C, Kim D, Han S S, Lee H M 2021 Sci Rep 11 11604Google Scholar

    [135]

    Kong S, Ricci F, Guevarra D, Neaton J B, Gomes C P, Gregoire J M 2022 Nat. Commun. 13 949Google Scholar

    [136]

    Fung V, Ganesh P, Sumpter B G 2022 Chem. Mat. 34 4848Google Scholar

    [137]

    Kaundinya P R, Choudhary K, Kalidindi S R 2022 JOM 74 1395Google Scholar

    [138]

    Masood H, Sirojan T, Toe C Y, Kumar P V, Haghshenas Y, Sit P H, Amal R, Sethu V, Teoh W Y 2023 Cell Rep. Phys. Sci. 4 101555Google Scholar

    [139]

    Lee J, Asahi R 2021 Comput. Mater. Sci. 190 110314Google Scholar

    [140]

    Li B, Rangarajan S 2022 Comput. Chem. Eng. 157 107599Google Scholar

    [141]

    Tian S I P, Ren Z, Venkataraj S, Cheng Y, Bash D, Oviedo F, Senthilnath J, Chellappan V, Lim Y F, Aberle A G, MacLeod B P, Parlane F G L, Berlinguette C P, Li Q, Buonassisi T, Liu Z 2023 Digit. Discov. 2 1334Google Scholar

    [142]

    Zuo H, Zhang G, Pedrycz W, Behbood V, Lu J 2016 IEEE Trans. Fuzzy Syst. 25 1795

    [143]

    Wang L, Zhang C, Bai R, Li J, Duan H 2020 Chem. Commun. 56 9368Google Scholar

    [144]

    Yamada H, Liu C, Wu S, Koyama Y, Ju S, Shiomi J, Morikawa J, Yoshida R 2019 ACS Central Sci. 5 1717Google Scholar

    [145]

    Pan S J, Yang Q 2009 IEEE Trans. Knowl. Data Eng. 22 1345

    [146]

    Xu P, Ji X, Li M, Lu W 2023 npj Comput. Mater. 9 42Google Scholar

  • [1] 张嘉晖. 蛋白质计算中的机器学习.  , doi: 10.7498/aps.73.20231618
    [2] 杨章章, 刘丽, 万致涛, 付佳, 樊群超, 谢锋, 张燚, 马杰. 结合机器学习算法提高从头算方法对HF/HBr/H35Cl/Na35Cl振动能谱的预测性能.  , doi: 10.7498/aps.72.20221953
    [3] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测.  , doi: 10.7498/aps.71.20211625
    [4] 王恩, 董文翰, 周辉, 刘猛, 纪洪艳, 孟胜, 孙家涛. 周期场驱动下量子材料的非平衡物态.  , doi: 10.7498/aps.70.20201808
    [5] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计.  , doi: 10.7498/aps.70.20210831
    [6] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展.  , doi: 10.7498/aps.68.20191544
    [7] 冯小静, 郭玮, 路兴强, 姚洪斌, 李月华. 三态K2分子飞秒含时光电子能谱的理论研究.  , doi: 10.7498/aps.64.143303
    [8] 张敏, 唐田田, 张朝民. NaLi分子飞秒含时光电子能谱的理论研究.  , doi: 10.7498/aps.63.023302
    [9] 李一丁, 张鹏飞, 张辉, 徐宏亮. 电子磁矩对同步辐射频谱的修正.  , doi: 10.7498/aps.62.094103
    [10] 张强, 户田裕之. 同步辐射K边减影成像及其在多孔金属材料中的应用.  , doi: 10.7498/aps.60.114103
    [11] 吴海飞, 张寒洁, 廖清, 陆赟豪, 斯剑霄, 李海洋, 鲍世宁, 吴惠祯, 何丕模. Mn/PbTe(111)界面行为的光电子能谱研究.  , doi: 10.7498/aps.58.1310
    [12] 张文华, 莫 雄, 王国栋, 王立武, 徐法强, 潘海斌, 施敏敏, 陈红征, 汪 茫. 苯并咪唑苝与金属Ag的界面电子结构研究.  , doi: 10.7498/aps.56.4936
    [13] 易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑 雷. 北京同步辐射3B3中能束线X射线探测系统性能研究.  , doi: 10.7498/aps.55.6287
    [14] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认.  , doi: 10.7498/aps.55.4496
    [15] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究.  , doi: 10.7498/aps.55.1083
    [16] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究.  , doi: 10.7498/aps.55.3433
    [17] 葛愉成. 用光电子能谱相位确定法同时测量阿秒超紫外线XUV脉冲的频率和强度时间分布.  , doi: 10.7498/aps.54.2653
    [18] 邹崇文, 孙 柏, 王国栋, 张文华, 徐彭寿, 潘海斌, 徐法强, 尹志军, 邱 凯. 低覆盖度的Au/GaN(0001)界面的同步辐射研究.  , doi: 10.7498/aps.54.3793
    [19] 崔大复, 王焕华, 戴守愚, 周岳亮, 陈正豪, 杨国桢, 刘凤琴, 奎热西, 钱海杰. Sb掺杂SrTio3透明导电薄膜的光电子能谱研究.  , doi: 10.7498/aps.51.187
    [20] 吕斌, 吕萍, 施申蕾, 张建华, 唐建新, 楼辉, 何丕模, 鲍世宁. OPCOT在Ru(0001)表面上的紫外光电子能谱研究.  , doi: 10.7498/aps.51.2644
计量
  • 文章访问数:  277
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-10
  • 修回日期:  2024-09-10
  • 上网日期:  2024-09-26

/

返回文章
返回
Baidu
map