Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Radiation characteristics of terahertz GaAs photoconductive antenna arrays

Yan Zhi-Jin Shi Wei

Citation:

Radiation characteristics of terahertz GaAs photoconductive antenna arrays

Yan Zhi-Jin, Shi Wei
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • A GaAs photoconductive antenna is one of the important radiation sources of terahertz electromagnetic waves. Antenna arrays can increase the radiation intensity of terahertz waves. Therefore, photoconductive antennas and arrays have attracted much attention for a long time. In this study, CST Microwave Studio is used to conduct a simulation calculation of the characteristics of a photoconductive antenna array radiating terahertz electromagnetic waves. Using the current transient model, the pulsed photocurrents generated when the laser is incident on the GaAs photoconductive antenna are calculated. With the pulsed photocurrents serving as an excitation source, a simulation calculation of the radiation performance of photoconductive antenna is conducted, and the effects of antenna structure and substrate material on the radiation of terahertz waves are analyzed. Based on this, the far-field radiation of terahertz wave radiated by the GaAs photoconductive antenna array is calculated. The simulation results show that the photoconductive antenna array radiates terahertz waves with stronger directivity. The width of main lobe is reduced, and its far-field radiation conforms to the multiple relationships of electric field superposition. A 1 × 2 GaAs photoconductive antenna array is developed, and the experimental results are consistent with the simulation conclusions, thereby laying a theoretical and experimental basis for fabricating the multielement terahertz photoconductive antenna arrays.
      Corresponding author: Shi Wei, swshi@mail.xaut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0701005), the National Natural Science Foundation of China (Grant No. 51807161), the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect of China (Grant No. SKLIPR1812), the China Postdoctoral Science Foundation (Grant No. 2018M633547), and the Youth Innovation Team of Shaanxi Universities, China (Grant No. 21JP084)
    [1]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [2]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X J 2004 Science 303 1494Google Scholar

    [3]

    Wang K L, Mittleman D M 2004 Nature 432 376Google Scholar

    [4]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar

    [5]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [6]

    Huang K C, Wang Z C 2011 IEEE Microw. Mag. 12 108Google Scholar

    [7]

    Oh S J, Huh Y M, Haam S, Suh J S, Son J H 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves Wollongong, Australia, September 23−28, 2012 p1

    [8]

    Kemp M C, Taday P F, Cole B E, Cluff J A, Fitzgerald A J, Tribe W R 2003 Terahertz for Millitary and Security Applications Orlando, USA, July 29, 2003 p44

    [9]

    Nagel M, Bolivar P H, Burcherseifer M, Bosserhoff H K, Buttner R 2002 Appl. Phys. Lett. 80 154Google Scholar

    [10]

    Mickan S, Abbott D, Munch J, Zhang X C, Doorn T 2000 Microelectron. J. 31 503Google Scholar

    [11]

    He Y J, Chen Y L, Zhang L, Wong S W, Chen Z N 2020 China Commun. 17 124Google Scholar

    [12]

    Awad M, Nagel M, Kurz H, Herfort J, Ploog K 2007 Appl. Phys. Lett. 91 181124Google Scholar

    [13]

    Tiedje H F, Saeedkia D, Nagel M, Haugen H K 2010 IEEE T. Microw. Theory 58 2040Google Scholar

    [14]

    Yang X X, Vorobiev A, Yang J, Jeppson K, Stake J 2020 IEEE T. THz. Sci. Techn. 10 554Google Scholar

    [15]

    Knotts M E, Denison D R 2006 Quantum Electronics and Laser Science Conference Long Beach, USA, May 21−26, 2006 p24

    [16]

    Berenger J P 1994 J. Comput. Phys. 114 185Google Scholar

    [17]

    Berenger J P 1996 J. Comput. Phys. 127 363Google Scholar

    [18]

    Berenger J P 1996 IEEE T. Antenn. Propag. 44 110Google Scholar

    [19]

    Weiland T 1996 Int. J. Numer. Model. El. 9 295

    [20]

    Weiland T, Timm M, Munteanu I 2008 IEEE Microw. Mag. 9 62Google Scholar

    [21]

    Darrow J T, Zhang X C, Auston D H, Morse J D 1992 IEEE J. Quantum Elect. 28 1607Google Scholar

    [22]

    Benicewicz P K, Roberts J P, Taylor A J 1994 J. Opt. Soc. Am. B 11 2533Google Scholar

    [23]

    Hattori T, Tukamoto K, Nakatsuka H 2001 Jpn. J. Appl. Phys. 40 4907Google Scholar

    [24]

    Tani M, Matsuura S, Sakai K, Nakashima S 1997 Appl. Optics 36 7853Google Scholar

    [25]

    Liu H, Ji W L, Shi W 2008 PIERS Online 4 386Google Scholar

    [26]

    Yan Z J, Shi W, Hou L, Xu M, Yang L, Dong C G, Li S T 2017 Mater. Res. Express 4 015304Google Scholar

  • 图 1  光电导天线示意图

    Figure 1.  Schematic diagram of photoconductive antenna

    图 2  光激发载流子浓度

    Figure 2.  Concentration of photo induced carriers

    图 3  电流随时间关系曲线

    Figure 3.  Current vs. time curve

    图 4  偶极天线示意图

    Figure 4.  Schematic diagram of dipole antenna

    图 5  天线S参数

    Figure 5.  S -parameter of antenna

    图 6  天线上的电场分布 (1 THz)

    Figure 6.  Electric field distribution around the antenna (1 THz)

    图 7  无衬底时天线远场辐射的三维方向图 (1 THz)

    Figure 7.  Three-dimensional pattern of far-field radiation of antenna without a substrate (1 THz).

    图 8  无衬底时天线E面电场分布方向图(1 THz)

    Figure 8.  Electric field distribution pattern on the E surface of antenna without a substrate (1 THz).

    图 9  有衬底时天线远场辐射的三维方向图 (a) 0.3 THz; (b) 0.5 THz; (c) 1 THz; (d) 1.5 THz; (e) 2 THz; (f) 2.5 THz

    Figure 9.  Three-dimensional patterns of far-field radiation of antenna with a substrate: (a) 0.3 THz; (b) 0.5 THz; (c) 1 THz; (d) 1.5 THz; (e) 2 THz; (f) 2.5 THz.

    图 10  有衬底时天线E面电场分布方向图 (a) 0.3 THz; (b) 0.5 THz; (c) 1 THz; (d) 1.5 THz; (e) 2 THz; (f) 2.5 THz

    Figure 10.  Electric field distribution pattern on the E surface of antenna with a substrate: (a) 0.3 THz; (b) 0.5 THz; (c) 1 THz; (d) 1.5 THz; (e) 2 THz; (f) 2.5 THz.

    图 11  天线阵列示意图 (d: 30 μm, D: 300 μm)

    Figure 11.  Schematic diagram of antenna array (d: 30 μm, D: 300 μm)

    图 12  2 × 2天线阵列的时域谱

    Figure 12.  Time-domain waveforms of 2 × 2 antenna array

    图 13  有衬底时天线阵列远场辐射的三维方向图 (a) 0.3 THz; (b) 0.5 THz; (c) 1 THz; (d) 1.5 THz; (e) 2 THz; (f) 2.5 THz

    Figure 13.  Three-dimensional patterns of far-field radiation of antenna array with a substrate: (a) 0.3 THz; (b) 0.5 THz; (c) 1 THz; (d) 1.5 THz; (e) 2 THz; (f) 2.5 THz

    图 14  有衬底时天线阵列E面电场分布方向图 (a) 0.3 THz; (b) 0.5 THz; (c) 1 THz; (d) 1.5 THz; (e) 2 THz; (f) 2.5 THz

    Figure 14.  Electric field distribution pattern on the E surface of antenna array with a substrate: (a) 0.3 THz; (b) 0.5 THz; (c) 1 THz; (d) 1.5 THz; (e) 2 THz; (f) 2.5 THz.

    图 15  1 × 2天线阵列实物图

    Figure 15.  Figure of 1 × 2 antenna array

    图 16  1 × 2天线阵列的时域谱

    Figure 16.  Time-domain waveforms of 1 × 2 antenna array

    图 17  两个阵元同时工作与两个阵元辐射THz波求和的时域谱

    Figure 17.  Time-domain waveforms when 2 elements are working simultaneously, and when radiative THz waves of 2 elements are superposed.

    Baidu
  • [1]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [2]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X J 2004 Science 303 1494Google Scholar

    [3]

    Wang K L, Mittleman D M 2004 Nature 432 376Google Scholar

    [4]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar

    [5]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [6]

    Huang K C, Wang Z C 2011 IEEE Microw. Mag. 12 108Google Scholar

    [7]

    Oh S J, Huh Y M, Haam S, Suh J S, Son J H 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves Wollongong, Australia, September 23−28, 2012 p1

    [8]

    Kemp M C, Taday P F, Cole B E, Cluff J A, Fitzgerald A J, Tribe W R 2003 Terahertz for Millitary and Security Applications Orlando, USA, July 29, 2003 p44

    [9]

    Nagel M, Bolivar P H, Burcherseifer M, Bosserhoff H K, Buttner R 2002 Appl. Phys. Lett. 80 154Google Scholar

    [10]

    Mickan S, Abbott D, Munch J, Zhang X C, Doorn T 2000 Microelectron. J. 31 503Google Scholar

    [11]

    He Y J, Chen Y L, Zhang L, Wong S W, Chen Z N 2020 China Commun. 17 124Google Scholar

    [12]

    Awad M, Nagel M, Kurz H, Herfort J, Ploog K 2007 Appl. Phys. Lett. 91 181124Google Scholar

    [13]

    Tiedje H F, Saeedkia D, Nagel M, Haugen H K 2010 IEEE T. Microw. Theory 58 2040Google Scholar

    [14]

    Yang X X, Vorobiev A, Yang J, Jeppson K, Stake J 2020 IEEE T. THz. Sci. Techn. 10 554Google Scholar

    [15]

    Knotts M E, Denison D R 2006 Quantum Electronics and Laser Science Conference Long Beach, USA, May 21−26, 2006 p24

    [16]

    Berenger J P 1994 J. Comput. Phys. 114 185Google Scholar

    [17]

    Berenger J P 1996 J. Comput. Phys. 127 363Google Scholar

    [18]

    Berenger J P 1996 IEEE T. Antenn. Propag. 44 110Google Scholar

    [19]

    Weiland T 1996 Int. J. Numer. Model. El. 9 295

    [20]

    Weiland T, Timm M, Munteanu I 2008 IEEE Microw. Mag. 9 62Google Scholar

    [21]

    Darrow J T, Zhang X C, Auston D H, Morse J D 1992 IEEE J. Quantum Elect. 28 1607Google Scholar

    [22]

    Benicewicz P K, Roberts J P, Taylor A J 1994 J. Opt. Soc. Am. B 11 2533Google Scholar

    [23]

    Hattori T, Tukamoto K, Nakatsuka H 2001 Jpn. J. Appl. Phys. 40 4907Google Scholar

    [24]

    Tani M, Matsuura S, Sakai K, Nakashima S 1997 Appl. Optics 36 7853Google Scholar

    [25]

    Liu H, Ji W L, Shi W 2008 PIERS Online 4 386Google Scholar

    [26]

    Yan Z J, Shi W, Hou L, Xu M, Yang L, Dong C G, Li S T 2017 Mater. Res. Express 4 015304Google Scholar

Metrics
  • Abstract views:  10795
  • PDF Downloads:  428
  • Cited By: 0
Publishing process
  • Received Date:  29 June 2021
  • Accepted Date:  21 July 2021
  • Available Online:  25 August 2021
  • Published Online:  20 December 2021

/

返回文章
返回
Baidu
map