-
In the hypersonic flight, the air surrounding an aircraft under the effect of high temperature will be ionized. The ionized gas is called plasma. Because of the influence of interaction between electromagnetic wave, in some cases the communication will be interrupted. High temperature effect is an important characteristic of the plasma. Therefore, the study of terahertz wave propagation in high temperature plasma is of great significance. In this paper, the transmission of terahertz wave in a high temperature plasma slab is studied. Generally, high temperature plasma is an anisotropic medium. The electromagnetic wave propagates in anisotropic high-temperature plasma and forms left-hand circular polarization mode or right-hand circular polarization (RCP) mode. It is found that the RCP wave can exhibit some novel characteristics, such as the forbidden band transmission characteristics, which is discovered in this paper. The transmission characteristics of terahertz wave in high temperature plasma are studied analytically. The results show that when the frequency of terahertz wave is lower than plasma frequency, the wave cannot be propagated in high temperature plasma, and it shows a stopband characteristic. When the frequency is higher, it can be transmitted through the plasma, and it presents a passband characteristic. These are consistent with the propagation characteristics of electromagnetic waves in cold plasma. However, some characteristics in high temperature plasma are different from those in the cold plasma. In high temperature plasma, the transmission characteristics are influenced by the electron temperature and external magnetic field. When the two parameters are chosen appropriately, a sharp transmission peak will be produced in the stopband. This phenomenon has never been found in cold plasma models before. And the paper will discuss this problem by the two influencing factors. It is also found that the frequency of the transmission peak is affected by magnetic field, and the peak amplitude is influenced by electron temperature. The electron temperatures at high transmittance (transmittance is about 1) under different applied magnetic fields are calculated. In order to study the law embodied in the data, the method of data fitting is adopted. And the formula of transmission peak frequency is obtained by curve fitting. The fitting results show that the transmission peak frequency is proportional to the external magnetic field. The relationship between peak electron temperature and external magnetic field is exponential. Finally, the fitting formula is verified by the finite-difference time-domain method. The numerical results are in good agreement with the analytical solution results, which proves the correctness of the work.
-
Keywords:
- high temperature plasma /
- magnetic field /
- transmission peak /
- electromagnetic wave
[1] Zheng L, Zhao Q, Liu S Z, Xing X J 2012 Acta Phys. Sin. 61 245202 (in Chinese)[郑灵, 赵青, 刘述章, 邢晓俊 2012 61 245202]
[2] Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102 (in Chinese)[陈伟, 郭立新, 李江挺, 淡荔 2017 66 084102]
[3] Tian Y, Ai X, Han Y P, Guo L X 2015 Phys. Plasmas 22 290
[4] Guo L J, Guo L X, Li J T 2017 Phys. Plasmas 24 022108
[5] Gu L, Tan Z Y, Cao J C 2013 Phys. 42 695 (in Chinese)[顾立, 谭智勇, 曹俊诚 2013 物理 42 695]
[6] Hu Q L, Liu S B, Li W 2008 Chin. Phys. B 17 1050
[7] Zhou W, Ji K, Chen H M 2017 Acta Phys. Sin. 66 054210 (in Chinese)[周雯, 季珂, 陈鹤鸣 2017 66 054210]
[8] Chen C M, Bai Y L, Zhang J, Yang Y, Wang J 2018 High Power Laser and Particle Beams 30 013101 (in Chinese)[陈春梅, 摆玉龙, 张洁, 杨阳, 王娟 2018 强激光与粒子束 30 013101]
[9] Yuan C X, Zhou Z X, Xiang X L, Sun H G, Wang H, Xing M D, Luo Z J 2011 Nucl. Instrum. Meth. B 269 23
[10] Yuan C X, Zhou Z X, Zhang J W W, Xiang X L, Yue F, Sun H G 2011 IEEE Trans. Plasma Sci. 39 1577
[11] Wu X G, Hu Y, Wang P, Nan L 2018 High Power Laser and Particle Beams 30 043102 (in Chinese)[伍习光, 胡洋, 王平, 南琳 2018 强激光与粒子束 30 043102]
[12] Liu J X, Zhang J L, Su M M 2014 Acta Phys. Sin. 63 137501 (in Chinese)[刘建晓, 张郡亮, 苏明敏 2014 63 137501]
[13] Liu J X, Su M M, You X, Li A P, Yang H W 2013 Sci. Tech. Eng. 13 4418 (in Chinese)[刘建晓, 苏明敏, 游雄, 李爱萍, 杨宏伟 2013 科学技术与工程 13 4418]
[14] Yang H W, Zhang Y, Chen R S 2007 J. Nanjing University of Science and Technology 31 491 (in Chinese)[杨宏伟, 张云, 陈如山 2007 南京理工大学学报 31 491]
[15] Song W, Zhang H 2016 J. Electromagnet Wave 30 1321
[16] Rahmani Z, Moradi H 2018 Optik 155 81
[17] Yang H W 2012 J. Russ Laser Res. 33 356
[18] Lee J H, Kalluri D K 1999 IEEE Trans. Antennas Propag. 47 1146
[19] Jazi B, Rahmani Z, Shokri B 2013 IEEE Trans. Plasma Sci. 41 290
[20] Xie C F, Rao K J 1999 Electromagnetic Field and Wave (3rd Ed.) (Beijing:Higher Education Press) pp237-239 (in Chinese)[谢处方, 饶克谨 1999 电磁场与电磁波(第3版) (北京:高等教育出版社) 第237–239页]
[21] Platzman P M, Buchsbaum S J 1963 Phys. Rev. 132 1
[22] Tian Y, Han Y P, Ling Y J, Ai X 2014 Phys. Plasmas 21 1768
-
[1] Zheng L, Zhao Q, Liu S Z, Xing X J 2012 Acta Phys. Sin. 61 245202 (in Chinese)[郑灵, 赵青, 刘述章, 邢晓俊 2012 61 245202]
[2] Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102 (in Chinese)[陈伟, 郭立新, 李江挺, 淡荔 2017 66 084102]
[3] Tian Y, Ai X, Han Y P, Guo L X 2015 Phys. Plasmas 22 290
[4] Guo L J, Guo L X, Li J T 2017 Phys. Plasmas 24 022108
[5] Gu L, Tan Z Y, Cao J C 2013 Phys. 42 695 (in Chinese)[顾立, 谭智勇, 曹俊诚 2013 物理 42 695]
[6] Hu Q L, Liu S B, Li W 2008 Chin. Phys. B 17 1050
[7] Zhou W, Ji K, Chen H M 2017 Acta Phys. Sin. 66 054210 (in Chinese)[周雯, 季珂, 陈鹤鸣 2017 66 054210]
[8] Chen C M, Bai Y L, Zhang J, Yang Y, Wang J 2018 High Power Laser and Particle Beams 30 013101 (in Chinese)[陈春梅, 摆玉龙, 张洁, 杨阳, 王娟 2018 强激光与粒子束 30 013101]
[9] Yuan C X, Zhou Z X, Xiang X L, Sun H G, Wang H, Xing M D, Luo Z J 2011 Nucl. Instrum. Meth. B 269 23
[10] Yuan C X, Zhou Z X, Zhang J W W, Xiang X L, Yue F, Sun H G 2011 IEEE Trans. Plasma Sci. 39 1577
[11] Wu X G, Hu Y, Wang P, Nan L 2018 High Power Laser and Particle Beams 30 043102 (in Chinese)[伍习光, 胡洋, 王平, 南琳 2018 强激光与粒子束 30 043102]
[12] Liu J X, Zhang J L, Su M M 2014 Acta Phys. Sin. 63 137501 (in Chinese)[刘建晓, 张郡亮, 苏明敏 2014 63 137501]
[13] Liu J X, Su M M, You X, Li A P, Yang H W 2013 Sci. Tech. Eng. 13 4418 (in Chinese)[刘建晓, 苏明敏, 游雄, 李爱萍, 杨宏伟 2013 科学技术与工程 13 4418]
[14] Yang H W, Zhang Y, Chen R S 2007 J. Nanjing University of Science and Technology 31 491 (in Chinese)[杨宏伟, 张云, 陈如山 2007 南京理工大学学报 31 491]
[15] Song W, Zhang H 2016 J. Electromagnet Wave 30 1321
[16] Rahmani Z, Moradi H 2018 Optik 155 81
[17] Yang H W 2012 J. Russ Laser Res. 33 356
[18] Lee J H, Kalluri D K 1999 IEEE Trans. Antennas Propag. 47 1146
[19] Jazi B, Rahmani Z, Shokri B 2013 IEEE Trans. Plasma Sci. 41 290
[20] Xie C F, Rao K J 1999 Electromagnetic Field and Wave (3rd Ed.) (Beijing:Higher Education Press) pp237-239 (in Chinese)[谢处方, 饶克谨 1999 电磁场与电磁波(第3版) (北京:高等教育出版社) 第237–239页]
[21] Platzman P M, Buchsbaum S J 1963 Phys. Rev. 132 1
[22] Tian Y, Han Y P, Ling Y J, Ai X 2014 Phys. Plasmas 21 1768
Catalog
Metrics
- Abstract views: 6334
- PDF Downloads: 126
- Cited By: 0