Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InSb based subwavelength array for terahertz wave focusing

Gu Wen-Hao Chang Sheng-Jiang Fan Fei Zhang Xuan-Zhou

Citation:

InSb based subwavelength array for terahertz wave focusing

Gu Wen-Hao, Chang Sheng-Jiang, Fan Fei, Zhang Xuan-Zhou
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the continuous development of terahertz (THz) technology in recent years, many kinds of THz functional devices including switchers, filters, modulators, isolator and polarizers have been demonstrated. However, researches of the focusing devices in the terahertz frequency range are rarely reported. In this paper, we propose a subwavelength metal-air-InSb-metal periodic array structure to perform terahertz wave focusing. The dependence of permittivity of InSb in the THz regime on external magnetic field and temperature is calculated theoretically. Based on the magneto-optical effect of the semiconductor material InSb and asymmetrical waveguide structure, the influences of external magnetic field and temperature on the focusing and transmittance characteristics of the device are studied in detail. Numerically simulated results show that the structure proposed above can not only improve the transmittance greatly but also perform focusing perfectly. Calculations on the transmission properties show that in a certain range of temperature, the power flow transmittance at the focus point increases with the increase of temperature. In the meantime, for a certain temperature, with increasing the external magnetic field, the power flow continuously increases as well and reaches a maximum value at a certain magnetic field. For example, for a temperature of 172 K and a magnetic field of 0.6 T, the maximum power flow transmitted at the focus point is 10200 W/m2 at 0.8 THz, which is about 28 times larger than that without magnetic field at the same temperature. In addition, the simulation results also show that when the temperature and external magnetic field are fixed at 172 K and 0.5 T, respectively, the power flow transmittances for the incident waves at different frequencies are different. There is a peak value of the transmittance appearing at a specific frequency of 0.8 THz. Moreover, when the incident wave frequency is far from 0.8 THz, the transmittance decreases dramatically. It is worth noting that by choosing different temperatures and external magnetic fields, the structure proposed can not only enhance the transmittance over 20 times at the focus point, but also manipulate effectively the THz wave in a broad operating bandwidth of 400 GHz from 0.4 THz to 0.8 THz. These properties indicate that the proposed structure can act as an ideal tunable, broadband, and high transmittance focusing device in the terahertz regime.
      Corresponding author: Chang Sheng-Jiang, sjchang@nankai.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB339800), the National Natural Science Foundation of China (Grant Nos. 61171027, 61505088), the Natural Science Foundation of Tianjin, China (Grant No. 15JCQNJC02100), and the Project of Science and Technology Program of Tianjin, China (Grant No. 13RCGFGX01127).
    [1]

    Leitenstorfer A, Hunsche S, Shah J, Nuss M C, Knox W H 1999 Appl. Phys. Lett. 74 1516

    [2]

    Carr G L, Martin M C, McKinney W R, Jordan K, Neil G R, Williams G P 2002 Nature 420 153

    [3]

    Rochat M, Ajili L, Willenberg H, Faist J, Beere H, Davies G, Linfield E, Ritchie D 2002 Appl. Phys. Lett. 81 1381

    [4]

    Hu M, Zhang Y X, Yan Y, Zhong R B, Liu S G 2009 Chin. Phys. B 18 3877

    [5]

    Deng X H, Yuan J R, Liu J T, Wang T B 2015 Acta Phys. Sin. 64 074101 (in Chinese) [邓新华, 袁吉仁, 刘江涛, 王同标 2015 64 074101]

    [6]

    Withayachumnankul W, Abbott D 2009 IEEE Photon. J. 1 99

    [7]

    Wang Y, Wang X, He X J, Mei J S, Chen M H, Yin J H, Lei Q Q 2012 Acta Phys. Sin. 61 137301 (in Chinese) [王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉 2012 61 137301]

    [8]

    Mao Q, Wen Q Y, Tian W, Wen T L, Chen, Z, Yang Q H, Zhang H W 2014 Opt. Lett. 39 5649

    [9]

    He J L, Liu P G, He Y L, Hong Z 2012 Appl. Opt. 51 776

    [10]

    Huang Z, Parrott E P J, Park H, Chan H P, Pickwell-MacPherson E 2014 Opt. Lett. 39 793

    [11]

    Chen S, Fan F, Wang X H, Wu P F, Zhang H, Chang S J 2015 Opt. Express 23 1015

    [12]

    Miyamaru F, Hayashi S, Otani C, Kawase K, Ogawa Y, Yoshida H, Kato E 2006 Opt. Lett. 31 1118

    [13]

    Xiao X A, Wu J B, Miyamaru F, Zhang M Y, Li S B, Takeda M W, Wen W J, Sheng P 2011 Appl. Phys. Lett. 98 011911

    [14]

    Sasaki T, Noda K, Kawatsuki N, Ono H 2015 Opt. Lett. 40 1544

    [15]

    Arikawa T, Wang X F, Belyanin A A, Kono J 2012 Opt. Express 20 19484

    [16]

    Kim S, Lim Y, Kim H, Park J, Lee B 2008 Appl. Phys. Lett. 92 013103

    [17]

    Shi H F, Wang C T, Du C L, Luo X G, Dong X C, Gao H T 2005 Opt. Express 13 6815

    [18]

    Meng Q D, Gui L, Zhang X L, Zhang L W, Geng D F, L Y Q 2014 Acta Phys. Sin. 63 118503 (in Chinese) [孟庆端, 贵磊, 张晓玲, 张立文, 耿东峰, 吕衍秋 2014 63 118503]

    [19]

    Guo N, Hu W D, Chen X S, Meng C, L Y Q, Lu W 2011 J. Electron. Mater. 40 1647

    [20]

    Bai J, Hu W D, Guo N, Lei W, L Y Q, Zhang X L, Si J J, Chen X S, Lu W 2014 J. Electron. Mater. 43 2795

    [21]

    Zhu F M, Li X E, Shen L F 2014 Appl. Opt. 53 5896

    [22]

    Li W, Kuang D F, Fan F, Chang S J, Lin L 2012 Appl. Opt. 51 7098

    [23]

    Hu B, Wang Q J, Kok S W, Zhang Y 2012 Plasmonics 7 191

    [24]

    Fan F, Chen S, Wang X H, Chang S J 2013 Opt. Express 21 8614

    [25]

    Hu B, Wang Q J, Zhang Y 2012 Opt. Lett. 37 1895

    [26]

    Halevi P, Ramos-Mendieta F 2000 Phys. Rev. Lett. 85 1875

  • [1]

    Leitenstorfer A, Hunsche S, Shah J, Nuss M C, Knox W H 1999 Appl. Phys. Lett. 74 1516

    [2]

    Carr G L, Martin M C, McKinney W R, Jordan K, Neil G R, Williams G P 2002 Nature 420 153

    [3]

    Rochat M, Ajili L, Willenberg H, Faist J, Beere H, Davies G, Linfield E, Ritchie D 2002 Appl. Phys. Lett. 81 1381

    [4]

    Hu M, Zhang Y X, Yan Y, Zhong R B, Liu S G 2009 Chin. Phys. B 18 3877

    [5]

    Deng X H, Yuan J R, Liu J T, Wang T B 2015 Acta Phys. Sin. 64 074101 (in Chinese) [邓新华, 袁吉仁, 刘江涛, 王同标 2015 64 074101]

    [6]

    Withayachumnankul W, Abbott D 2009 IEEE Photon. J. 1 99

    [7]

    Wang Y, Wang X, He X J, Mei J S, Chen M H, Yin J H, Lei Q Q 2012 Acta Phys. Sin. 61 137301 (in Chinese) [王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉 2012 61 137301]

    [8]

    Mao Q, Wen Q Y, Tian W, Wen T L, Chen, Z, Yang Q H, Zhang H W 2014 Opt. Lett. 39 5649

    [9]

    He J L, Liu P G, He Y L, Hong Z 2012 Appl. Opt. 51 776

    [10]

    Huang Z, Parrott E P J, Park H, Chan H P, Pickwell-MacPherson E 2014 Opt. Lett. 39 793

    [11]

    Chen S, Fan F, Wang X H, Wu P F, Zhang H, Chang S J 2015 Opt. Express 23 1015

    [12]

    Miyamaru F, Hayashi S, Otani C, Kawase K, Ogawa Y, Yoshida H, Kato E 2006 Opt. Lett. 31 1118

    [13]

    Xiao X A, Wu J B, Miyamaru F, Zhang M Y, Li S B, Takeda M W, Wen W J, Sheng P 2011 Appl. Phys. Lett. 98 011911

    [14]

    Sasaki T, Noda K, Kawatsuki N, Ono H 2015 Opt. Lett. 40 1544

    [15]

    Arikawa T, Wang X F, Belyanin A A, Kono J 2012 Opt. Express 20 19484

    [16]

    Kim S, Lim Y, Kim H, Park J, Lee B 2008 Appl. Phys. Lett. 92 013103

    [17]

    Shi H F, Wang C T, Du C L, Luo X G, Dong X C, Gao H T 2005 Opt. Express 13 6815

    [18]

    Meng Q D, Gui L, Zhang X L, Zhang L W, Geng D F, L Y Q 2014 Acta Phys. Sin. 63 118503 (in Chinese) [孟庆端, 贵磊, 张晓玲, 张立文, 耿东峰, 吕衍秋 2014 63 118503]

    [19]

    Guo N, Hu W D, Chen X S, Meng C, L Y Q, Lu W 2011 J. Electron. Mater. 40 1647

    [20]

    Bai J, Hu W D, Guo N, Lei W, L Y Q, Zhang X L, Si J J, Chen X S, Lu W 2014 J. Electron. Mater. 43 2795

    [21]

    Zhu F M, Li X E, Shen L F 2014 Appl. Opt. 53 5896

    [22]

    Li W, Kuang D F, Fan F, Chang S J, Lin L 2012 Appl. Opt. 51 7098

    [23]

    Hu B, Wang Q J, Kok S W, Zhang Y 2012 Plasmonics 7 191

    [24]

    Fan F, Chen S, Wang X H, Chang S J 2013 Opt. Express 21 8614

    [25]

    Hu B, Wang Q J, Zhang Y 2012 Opt. Lett. 37 1895

    [26]

    Halevi P, Ramos-Mendieta F 2000 Phys. Rev. Lett. 85 1875

  • [1] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [3] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [4] Qin Zhao-Fu, Chen Hao, Hu Tao-Zheng, Chen Zhuo, Wang Zhen-Lin. Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [5] Wang Jian, Zhang Chao-Yue, Yao Zhao-Yu, Zhang Chi, Xu Feng, Yang Yuan. A method of rapidly designing graphene-based terahertz diffusion surface. Acta Physica Sinica, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [6] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [7] Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211596
    [8] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [9] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [10] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [11] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng, Niu Xue-Bin, Liu Ya-Qiao. Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface. Acta Physica Sinica, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [12] Li Dan, Liu Yong, Wang Huai-Xing, Xiao Long-Sheng, Ling Fu-Ri, Yao Jian-Quan. Gain characteristics of grapheme plasmain terahertz range. Acta Physica Sinica, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [13] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [14] Hou Hai-Sheng, Wang Guang-Ming, Li Hai-Peng, Cai Tong, Guo Wen-Long. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna. Acta Physica Sinica, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [15] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [16] Chen Zai-Gao, Wang Jian-Guo, Wang Guang-Qiang, Li Shuang, Wang Yue, Zhang Dian-Hui, Qiao Hai-Liang. A 0.14 THz coaxial surface wave oscillator. Acta Physica Sinica, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [17] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [18] Fan Fei, Guo Zhan, Bai Jin-Jun, Wang Xiang-Hui, Chang Sheng-Jiang. Magnetically tunable magneto-photonic crystals for multifunctional terahertz polarization controller. Acta Physica Sinica, 2011, 60(8): 084219. doi: 10.7498/aps.60.084219
    [19] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [20] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
Metrics
  • Abstract views:  7266
  • PDF Downloads:  271
  • Cited By: 0
Publishing process
  • Received Date:  24 August 2015
  • Accepted Date:  24 September 2015
  • Published Online:  05 January 2016

/

返回文章
返回
Baidu
map