搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁波在高密度等离子体微柱腔体结构中的新传输模式

焦蛟 童继生 马春光 郭佶玙 薄勇 赵青

引用本文:
Citation:

电磁波在高密度等离子体微柱腔体结构中的新传输模式

焦蛟, 童继生, 马春光, 郭佶玙, 薄勇, 赵青

New transmission mode of electromagnetic wave in high-density rod cavity structure

Jiao Jiao, Tong Ji-Sheng, Ma Chun-Guang, Guo Ji-Yu, Bo Yong, Zhao Qing
PDF
导出引用
  • 超高声速飞行器再入过程中会因为等离子体鞘层而产生通信中断,俗称黑障.近些年人们针对黑障通信的研究虽取得了一些成果,但仍然没能从根本上解决问题.本文从电磁波在高密度等离子体柱中的传输机理研究出发,借鉴二维光子晶体和表面波局域耦合相关理论,设计出了一种新型的等离子体微柱腔体结构,在这种特殊结构下L和S波段的电磁波在某些频段内出现了不同寻常的传输现象,即从高密度等离子体柱的内部穿过.这种新结构下的传输模式将为黑障通讯研究提供新的技术途径和方法.
    During reentry of hypersonic spacecraft into the atmosphere, a break in the radio communication due to the presence of a plasma sheath on the spacecraft can occur. The break is commonly known as reentry communication blackout. Normally, for high density plasma, it is difficult for the electromagnetic waves of L and S bands to penetrate through. They may be decayed rapidly or reflected. That is why reentry communication blackout happens. In recent years, initiative methods are used to reduce the effects of reentry communication blackout such as by designing ideal shape for reentry vehicle, sprinkling special substances on the surface of the vehicle to improve efficiency of electromagnetic wave, adding magnetic field within the blackout area, etc. However, these methods not only fail to fully resolve the problems caused by blackout but also bring some new ones. Therefore, to resolve the problems, transmission mechanism of electromagnetic waves in plasmons should be analyzed. In this paper, we use the finite difference time domain, consider the mechanism of electromagnetic waves in a structure consisting of high-density plasma rods, and refer to the two-dimensional (2D) photonic crystal and surface wave local coupling theory. A new type of high-density plasma micro-rod cavity structure is designed. The special structure, consisting of metal cavity, high-density plasma rod, and dielectric medium filled within the cavity, is quite different from traditional 2D sub-wavelength plasma rod arrays. This kind of design takes advantage of cavity structure to couple electromagnetic wave within the plasma rod so that the surface wave diffraction transmission mode can be changed into a local coupling enhancement penetrating mode. In this paper, we investigate the plasma micro-rod cavity structures with two shapes:cylinder and square, respectively. It is found that electromagnetic waves of L and S bands can have unusual transmission properties in certain frequency ranges, such that electromagnetic waves can pass through the interior of the high-density plasma rod.
      通信作者: 赵青, zhaoq@uestc.edu.cn
    • 基金项目: 国家高技术研究发展计划(批准号:2011AA7022016)、国家自然科学基金(批准号:11275045)和四川省科技支撑计划(批准号:2013GZ01333)资助的课题.
      Corresponding author: Zhao Qing, zhaoq@uestc.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA7022016), the National Natural Science Foundation of China (Grant No. 11275045), and the Scientific Research Fundation of the Education Department of Sichuan Province, China (Grant No. 2013GZ01333).
    [1]

    Sakai O, Sakaguchi T, Tachibana K 2007 Contrib. Plasma Phys. 47 96

    [2]

    Sakai O, Sakaguchi T, Tachibana K 2005 Appl. Phys. Lett. 87 241505

    [3]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445

    [4]

    Savino R 2010 Open Aerospace Engineer. J. 3 76

    [5]

    Thoma C, Rose D V, Miller C L, Clark R E, Hughes T P 2009 J. Appl. Phys. 106 043301

    [6]

    Sakai O, Sakaguchi T, Tachibana K 2007 J. Appl. Phys. 101 0733041

    [7]

    Sakaguchi T, Sakai O, Tachibana K 2007 Appl. Phys. 101 0733051

    [8]

    Sakai O, Sakaguchi T, Ito Y, Tachibana K 2005 Plasma Phys. 47 B617

    [9]

    Zhong S Y, Liu S 2009 Chin. J. Comput. Phys. 26 3 (in Chinese) [钟双英, 刘崧2009 计算物理26 3]

    [10]

    Xia X R, Huang Y, Yin C Y 2009 Aerospace Shanghai 1 12 (in Chinese) [夏新仁, 黄冶, 尹成友2009 上海航天112]

    [11]

    Zheng L, Zhao Q, Luo X G, Ma P, Liu S Z 2012 Acta Phys. Sin. 61 155203(in Chinese) [郑灵, 赵青, 罗先刚, 马平, 刘述章 2012 61 155203]

    [12]

    Yang M, Li X P, Liu Y M, Shi L 2014 Acta Phys. Sin. 63 085201(in Chinese) [杨敏, 李小平, 刘彦明, 石磊 2014 63 085201]

    [13]

    Zheng L 2013 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [郑灵2013 博士学位论文(成都: 电子科技大学)]

    [14]

    Toader O, John S 2004 Phys. Rev. E. 70 0466051

    [15]

    Chern R L, Chang C C, Chang C C 2006 Phys. Rev. E.73 0366051

    [16]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [17]

    Li X, Yang L, Hu C, Luo X, Hong M 2011 Opt. Express 19 5283

    [18]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396

    [19]

    Luo X 2015 Science China Physics, Mechanics Astronomy 58 594201

    [20]

    Zhao Y, Huang C, Qing A, Luo X 2015 IEEE Photonics J. 99 1

    [21]

    Yang Y C 2010 M. S. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese) [杨永常 2010 硕士学位论文 (南京: 南京航空航天大学)]

    [22]

    Schexnayder C J, Evans J S, Huber P W 1970 NASA SP-252 277

  • [1]

    Sakai O, Sakaguchi T, Tachibana K 2007 Contrib. Plasma Phys. 47 96

    [2]

    Sakai O, Sakaguchi T, Tachibana K 2005 Appl. Phys. Lett. 87 241505

    [3]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445

    [4]

    Savino R 2010 Open Aerospace Engineer. J. 3 76

    [5]

    Thoma C, Rose D V, Miller C L, Clark R E, Hughes T P 2009 J. Appl. Phys. 106 043301

    [6]

    Sakai O, Sakaguchi T, Tachibana K 2007 J. Appl. Phys. 101 0733041

    [7]

    Sakaguchi T, Sakai O, Tachibana K 2007 Appl. Phys. 101 0733051

    [8]

    Sakai O, Sakaguchi T, Ito Y, Tachibana K 2005 Plasma Phys. 47 B617

    [9]

    Zhong S Y, Liu S 2009 Chin. J. Comput. Phys. 26 3 (in Chinese) [钟双英, 刘崧2009 计算物理26 3]

    [10]

    Xia X R, Huang Y, Yin C Y 2009 Aerospace Shanghai 1 12 (in Chinese) [夏新仁, 黄冶, 尹成友2009 上海航天112]

    [11]

    Zheng L, Zhao Q, Luo X G, Ma P, Liu S Z 2012 Acta Phys. Sin. 61 155203(in Chinese) [郑灵, 赵青, 罗先刚, 马平, 刘述章 2012 61 155203]

    [12]

    Yang M, Li X P, Liu Y M, Shi L 2014 Acta Phys. Sin. 63 085201(in Chinese) [杨敏, 李小平, 刘彦明, 石磊 2014 63 085201]

    [13]

    Zheng L 2013 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [郑灵2013 博士学位论文(成都: 电子科技大学)]

    [14]

    Toader O, John S 2004 Phys. Rev. E. 70 0466051

    [15]

    Chern R L, Chang C C, Chang C C 2006 Phys. Rev. E.73 0366051

    [16]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [17]

    Li X, Yang L, Hu C, Luo X, Hong M 2011 Opt. Express 19 5283

    [18]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396

    [19]

    Luo X 2015 Science China Physics, Mechanics Astronomy 58 594201

    [20]

    Zhao Y, Huang C, Qing A, Luo X 2015 IEEE Photonics J. 99 1

    [21]

    Yang Y C 2010 M. S. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese) [杨永常 2010 硕士学位论文 (南京: 南京航空航天大学)]

    [22]

    Schexnayder C J, Evans J S, Huber P W 1970 NASA SP-252 277

  • [1] 刘幸, 郭红梅, 付饶, 范浩然, 冯帅, 陈笑, 李传波, 王义全. 基于环形微腔的多频段三角晶格光子晶体耦合腔波导光学传输特性.  , 2018, 67(23): 234201. doi: 10.7498/aps.67.20181579
    [2] 杨红卫, 孟珊珊, 高冉冉, 彭硕. 光子晶体传输特性的时域精细积分法分析.  , 2017, 66(8): 084101. doi: 10.7498/aps.66.084101
    [3] 周雯, 季珂, 陈鹤鸣. 基于平行磁控的磁化等离子体光子晶体THz波调制器.  , 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [4] 梁文耀, 张玉霞, 陈武喝. 低对称性光子晶体超宽带全角自准直传输的机理研究.  , 2015, 64(6): 064209. doi: 10.7498/aps.64.064209
    [5] 李乾利, 温廷敦, 许丽萍, 王志斌. 单轴应力对一维镜像光子晶体光子局域态透射峰的影响.  , 2013, 62(18): 184212. doi: 10.7498/aps.62.184212
    [6] 苏安, 高英俊. 双重势垒一维光子晶体量子阱的光传输特性研究.  , 2012, 61(23): 234208. doi: 10.7498/aps.61.234208
    [7] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响.  , 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [8] 章海锋, 刘少斌, 孔祥鲲. TM模式下二维非磁化等离子体光子晶体的禁带调制特性分析.  , 2011, 60(5): 055209. doi: 10.7498/aps.60.055209
    [9] 章海锋, 刘少斌, 孔祥鲲. 横磁模式下二维非磁化等离子体光子晶体的线缺陷特性研究.  , 2011, 60(2): 025215. doi: 10.7498/aps.60.025215
    [10] 刘漾, 巩华荣, 魏彦玉, 宫玉彬, 王文祥, 廖复疆. 有效抑制光子晶体加载矩形谐振腔中模式竞争的方法.  , 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [11] 章海锋, 马力, 刘少斌. 磁化等离子体光子晶体缺陷态的研究.  , 2009, 58(2): 1071-1076. doi: 10.7498/aps.58.1071
    [12] 殷海荣, 宫玉彬, 魏彦玉, 岳玲娜, 路志刚, 巩华荣, 黄民智, 王文祥. 有限开敞介质光子晶体的模式及其带结构分析.  , 2008, 57(6): 3562-3570. doi: 10.7498/aps.57.3562
    [13] 杜晓宇, 郑婉华, 任 刚, 王 科, 邢名欣, 陈良惠. 二维光子晶体耦合腔阵列的慢波效应研究.  , 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [14] 林旭升, 吴立军, 郭 旗, 胡 巍, 兰 胜. 条形耦合波导对光子晶体耦合缺陷模的影响.  , 2008, 57(12): 7717-7724. doi: 10.7498/aps.57.7717
    [15] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振.  , 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [16] 殷海荣, 宫玉彬, 魏彦玉, 路志刚, 巩华荣, 岳玲娜, 黄民智, 王文祥. 非截面二维光子晶体排列矩形波导的全模式分析.  , 2007, 56(3): 1590-1597. doi: 10.7498/aps.56.1590
    [17] 马小涛, 郑婉华, 任 刚, 樊中朝, 陈良惠. 感应耦合等离子体刻蚀InP/InGaAsP二维光子晶体结构的研究.  , 2007, 56(2): 977-981. doi: 10.7498/aps.56.977
    [18] 许兴胜, 陈弘达, 张道中. 非晶光子晶体中的光子局域化.  , 2006, 55(12): 6430-6434. doi: 10.7498/aps.55.6430
    [19] 冯立娟, 江海涛, 李宏强, 张冶文, 陈 鸿. 光子晶体耦合腔波导的色散特性.  , 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
    [20] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析.  , 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
计量
  • 文章访问数:  6132
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-26
  • 修回日期:  2017-09-25
  • 刊出日期:  2018-01-05

/

返回文章
返回
Baidu
map