Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical and numerical studies on motion process of dense plasma focus

SUN Qiang DONG Ye YANG Wei ZHANG Hantian SONG Mengmeng LIU Zhaohui WANG Ziming ZHOU Qianhong

Citation:

Theoretical and numerical studies on motion process of dense plasma focus

SUN Qiang, DONG Ye, YANG Wei, ZHANG Hantian, SONG Mengmeng, LIU Zhaohui, WANG Ziming, ZHOU Qianhong
cstr: 32037.14.aps.74.20250040
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Dense plasma focus (DPF) device is a pulsed high current discharge device, which is widely used in particle accelerator, controlled nuclear fusion, space propulsion, and pulsed neutron source. However, existing models for DPF dynamics, including semi-empirical snowplow approximations and particle-in-cell (PIC) methods, face limitations in balancing computational efficiency and comprehensive physical descriptions. In contrast, magnetohydrodynamic (MHD) models can comprehensively analyze the macroscopic phenomena (e.g. sheath motion, current distribution, fluid instabilities) and the influence of parameters (e.g. electrode geometry, gas pressure, and driving current waveforms) on DPF performance. Although MHD cannot self-consistently resolve kinetic behaviors like high-energy particle beams or neutron production during pinch phases, it remains highly valuable for investigating macroscopic DPF physics when quantitative neutron yield analysis is unnecessary. Therefore, a two-temperature MHD model coupled with an external RLC circuit is developed in this paper, which combines electron-ion thermal nonequilibrium, resistive effects, and plasma transport coefficients derived from Braginskii formulations. The model is rigorously validated based on experimental data from two benchmark DPF devices (UNU and UDMPF1), demonstrating high consistency in current waveform, voltage profile, and radial implosion trajectory. The research shows that the DPF plasma sheath is continuously accelerated along the axial direction under the action of the Lorentz force. When it moves to the end of the inner electrode, due to Z-pinch effect, the plasma sheath bends radially inward and is further compressed onto the axis of symmetry, finally forming a high-temperature and high-density plasma region in front of the inner electrode end, the so-called plasma focus. For the UNU device, simulations reveal distinct plasma evolution phases. One is the axial acceleration (0–2.5 μs), where the current sheath reaches a speed of up to 90 km/s under the dominance of Lorentz force, with ion temperatures rising from 1 eV to 100 eV, and the other is the radial implosion (2.78–2.90 μs), during which plasma density increases by an order of magnitude (reaching to ~1024 m–3) and ion temperature surges to ~1 keV through magnetically driven compression. Further studies also find that for large DPF devices, with the inductance reduced and the capacitance increased, the circuit current is easily saturated. However, increasing the circuit voltage has a more significant effect on the increase of current. This paper shows that for large DPF devices, the ratio of anode radius to cathode radius needs to be as small as possible, which can increase the peak current and pinch current of DPF while keeping other parameters unchanged.
      Corresponding author: ZHOU Qianhong, zhou_qianhong@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12475256, 12375246, 12305288).
    [1]

    Filippov N, Filippova T, Vinogradov V 1962 Nucl. Fusion 2 577

    [2]

    Mather J 1964 Phys. Fluids 7 S28Google Scholar

    [3]

    Khan I, Jabbar S, Hussain T 2010 Nucl. Instrum. Methods Phys. Res. 268 2228Google Scholar

    [4]

    Khan K, Ahmad R, Hussain T 2022 Radiat. Eff. Defects Solids 177 892Google Scholar

    [5]

    Rawat R 2015 J. Phys. Conf. Ser 591 012021Google Scholar

    [6]

    Soto L 2005 Plasma Phys. Control. Fusion 47 A361Google Scholar

    [7]

    Tang V, Adams M, Rusnak B 2010 IEEE Trans. Plasma Sci. 38 719Google Scholar

    [8]

    Temple B, Barnouin O, Miley G H 1991 Fusion Sci. Technol. 19 846Google Scholar

    [9]

    Thomas R, Yang Y, Miley G 2005 AIP Conf. Proc. 746 536Google Scholar

    [10]

    Auluck S 2023 Phys. Plasmas 30 043109Google Scholar

    [11]

    Gribkov V, Latyshev S, Miklaszewski R 2010 Phys. Scr. 81 035502Google Scholar

    [12]

    Verma R, Roshan M, Malik F 2008 Plasma Sources Sci. Technol. 17 045020Google Scholar

    [13]

    Lerner E J, Hassan S M, Karamitsos Z I, Fritsch R 2023 J. Fusion Energy 42 7Google Scholar

    [14]

    Bennett N, Blasco M, Breeding K, et al. 2016 Source and Diagnostic Development for a Neutron Diagnosed Subcritical Experiment North Las Vegas, NV (United States

    [15]

    Bennett N, Blasco M, Constantino D 2016 Dense Plasma Focus Experimental Results and Plans for NDSE North Las Vegas, NV (United States

    [16]

    Krishnan M 2012 IEEE Trans. Plasma Sci. 40 3189Google Scholar

    [17]

    Bernard A, Coudevilie A, Jolas A 1975 Phys. Fluids 18 180Google Scholar

    [18]

    Sadowski M, Herold H, Schmidt H 1984 Phys. Lett. A 105 117Google Scholar

    [19]

    Decker G, Kies W, Nadolny R 1996 Plasma Sources Sci. Technol. 5 112Google Scholar

    [20]

    Brzosko J S, Robouch B, Klobukowska J 1987 Fusion Sci. Technol. 12 71Google Scholar

    [21]

    Gribkov V, Bienkowska B, Borowiecki M, Dubrovsky A V, Ivanova-Stanik I, Karpinski L, Miklaszewski R A, Paduch M, Scholz M, Tomaszewski K 2007 J. Phys. D: Appl. Phys. 40 1977Google Scholar

    [22]

    浓密等离子体焦点研究小组 1975 24 309Google Scholar

    Dense Plasma Focus Group 1975 Acta Phys. Sin. 24 309Google Scholar

    [23]

    吕铭方, 韩旻, 杨津基, 王新新 1996 清华大学学报 5 36

    Lv M F, Han Y, Yang J J, Wang X X 1996 Tsinghua Sci. Technol. 5 36

    [24]

    王新新, 韩旻, 王志文, 刘坤 1999 中国科学 29 76

    Wang X X, Han Y, Wang Z W, Liu K 1999 Sci. China 29 76

    [25]

    张贵新, 罗承沐, 王新新等 2002 高电压技术 28 32Google Scholar

    Zhang G X, Luo C M, Wang X X 2002 High Volt. Eng. 28 32Google Scholar

    [26]

    韩旻, 罗承沐, 王克超 1995 强激光与粒子束 7 461

    Han Y, Luo C M, Wang K C 1995 High Power Laser Part. Beams 7 461

    [27]

    龙继东, 陈林, 丰树平 2019 高能量密度物理 2 42

    Long J D, Chen L, Feng S P, 2019 High Energy Dens. Phys. 2 42

    [28]

    陈林, 丰树平, 高顺受 2004 中国科学 34 458

    Chen L, Feng S P, Gao S S 2004 Sci. China 34 458

    [29]

    李名加, 范娟, 章法强 2018 强激光与粒子束 30 129Google Scholar

    Li M J, Fan J, Zhang F Q 2018 High Power Laser Part. Beams 30 129Google Scholar

    [30]

    郭洪生, 杨高照, 朱学彬 2012 核电子学与探测技术 32 880Google Scholar

    Guo H S, Yang G Z, Zhu X B 2012 Nucl. Electron. Detection Tech. 32 880Google Scholar

    [31]

    Xi H, Liang C, Zhang F 2021 J. Instrum. 16 P12021Google Scholar

    [32]

    谈效华, 戴晶怡, 米伦, 黄华国, 谢超美, 周明贵 2004 第三届北京核学会核应用技术学术交流会

    Tan X H, Dai J Y, Mi L, Huang H G, Xie C M, Zhou M G 2004 The 3rd Beijing Nuclear Society Nuclear Application Technology Academic Exchange meeting

    [33]

    Haines M 2011 Plasma Phys. Control. Fusion 53 093001Google Scholar

    [34]

    Auluck S, Kunes P, Paduch M, Sadowski M J, Krauz V I, Lee S, Soto L, Scholz M, Miklaszewski R, Schmidt H, Blagoev A, Samuelli M, Seng Y S, Springham S V, Talebitaher A, Pavez C, Akel M, Yap S L, Verma R, Kolacek, Keat P L C, Rawat R S, Abdou A, Zhang G X, Laas T 2021 Plasma 4 450Google Scholar

    [35]

    Hart P J 1962 Phys. Fluids 5 38Google Scholar

    [36]

    Lee S 2014 J. Fusion Energy 33 319Google Scholar

    [37]

    Potter D 1971 Phys. Fluids 14 1911Google Scholar

    [38]

    Garanin S F, Mamyshev V I 2008 Plasma Phys. Rep. 34 639Google Scholar

    [39]

    Meehan B T, Niederhau H 2016 JDMS 13 153

    [40]

    Schmidt A, Tang V, Welch D 2012 Phys. Rev. Lett. 109 205003Google Scholar

    [41]

    Schmidt A, Link A, Welch D 2014 Phys. Plasmas 21 102703Google Scholar

    [42]

    Angus J, Link A, Schmid A 2021 Phys. Plasmas 28 010701Google Scholar

    [43]

    刘全 2002 博士学位论文(北京: 中国工程物理研究院研究生院)

    Liu Q 2002, Ph. D. Dissertation (Beijing: Graduate School of China Academy of Engineering Physics

    [44]

    Braginskii S 1965 Rev. Plasma Phys. 1 205

    [45]

    Lim L H, Yap S, Lim L K, Lee M C, Poh H S, Ma J, Yap S S, Lee S 2015 Phys. Plasmas 22 092702Google Scholar

  • 图 1  DPF装置基本结构

    Figure 1.  The basic structure of the DPF device.

    图 2  DPF计算域示意图

    Figure 2.  Schematic diagram of the DPF computational domain.

    图 3  计算的电流(UNU装置)

    Figure 3.  The calculated current of UNU device.

    图 4  径向时刻的计算电压(UNU装置)

    Figure 4.  The calculated voltage at radial time of UNU device.

    图 5  径向阶段轨迹对比(UDMPF1装置)

    Figure 5.  The comparison of radial phase trajectories of UDMPF1 device.

    图 6  不同时刻的离子温度分布(轴向阶段)

    Figure 6.  Ion temperature distribution at different times (axial phase).

    图 7  不同时刻的离子温度分布(径向阶段)

    Figure 7.  Ion temperature distribution at different times (radial phase).

    图 8  不同时刻的离子数密度分布

    Figure 8.  Ion number density distribution at different time.

    图 9  不同时刻的离子速度分布

    Figure 9.  Ion velocity distribution at different time.

    图 10  轴向阶段电流变化(其他参数不变, 只改变阴极径)

    Figure 10.  The current change at axial phase (other parameters remain unchanged, only the cathode radius is changed).

    Baidu
  • [1]

    Filippov N, Filippova T, Vinogradov V 1962 Nucl. Fusion 2 577

    [2]

    Mather J 1964 Phys. Fluids 7 S28Google Scholar

    [3]

    Khan I, Jabbar S, Hussain T 2010 Nucl. Instrum. Methods Phys. Res. 268 2228Google Scholar

    [4]

    Khan K, Ahmad R, Hussain T 2022 Radiat. Eff. Defects Solids 177 892Google Scholar

    [5]

    Rawat R 2015 J. Phys. Conf. Ser 591 012021Google Scholar

    [6]

    Soto L 2005 Plasma Phys. Control. Fusion 47 A361Google Scholar

    [7]

    Tang V, Adams M, Rusnak B 2010 IEEE Trans. Plasma Sci. 38 719Google Scholar

    [8]

    Temple B, Barnouin O, Miley G H 1991 Fusion Sci. Technol. 19 846Google Scholar

    [9]

    Thomas R, Yang Y, Miley G 2005 AIP Conf. Proc. 746 536Google Scholar

    [10]

    Auluck S 2023 Phys. Plasmas 30 043109Google Scholar

    [11]

    Gribkov V, Latyshev S, Miklaszewski R 2010 Phys. Scr. 81 035502Google Scholar

    [12]

    Verma R, Roshan M, Malik F 2008 Plasma Sources Sci. Technol. 17 045020Google Scholar

    [13]

    Lerner E J, Hassan S M, Karamitsos Z I, Fritsch R 2023 J. Fusion Energy 42 7Google Scholar

    [14]

    Bennett N, Blasco M, Breeding K, et al. 2016 Source and Diagnostic Development for a Neutron Diagnosed Subcritical Experiment North Las Vegas, NV (United States

    [15]

    Bennett N, Blasco M, Constantino D 2016 Dense Plasma Focus Experimental Results and Plans for NDSE North Las Vegas, NV (United States

    [16]

    Krishnan M 2012 IEEE Trans. Plasma Sci. 40 3189Google Scholar

    [17]

    Bernard A, Coudevilie A, Jolas A 1975 Phys. Fluids 18 180Google Scholar

    [18]

    Sadowski M, Herold H, Schmidt H 1984 Phys. Lett. A 105 117Google Scholar

    [19]

    Decker G, Kies W, Nadolny R 1996 Plasma Sources Sci. Technol. 5 112Google Scholar

    [20]

    Brzosko J S, Robouch B, Klobukowska J 1987 Fusion Sci. Technol. 12 71Google Scholar

    [21]

    Gribkov V, Bienkowska B, Borowiecki M, Dubrovsky A V, Ivanova-Stanik I, Karpinski L, Miklaszewski R A, Paduch M, Scholz M, Tomaszewski K 2007 J. Phys. D: Appl. Phys. 40 1977Google Scholar

    [22]

    浓密等离子体焦点研究小组 1975 24 309Google Scholar

    Dense Plasma Focus Group 1975 Acta Phys. Sin. 24 309Google Scholar

    [23]

    吕铭方, 韩旻, 杨津基, 王新新 1996 清华大学学报 5 36

    Lv M F, Han Y, Yang J J, Wang X X 1996 Tsinghua Sci. Technol. 5 36

    [24]

    王新新, 韩旻, 王志文, 刘坤 1999 中国科学 29 76

    Wang X X, Han Y, Wang Z W, Liu K 1999 Sci. China 29 76

    [25]

    张贵新, 罗承沐, 王新新等 2002 高电压技术 28 32Google Scholar

    Zhang G X, Luo C M, Wang X X 2002 High Volt. Eng. 28 32Google Scholar

    [26]

    韩旻, 罗承沐, 王克超 1995 强激光与粒子束 7 461

    Han Y, Luo C M, Wang K C 1995 High Power Laser Part. Beams 7 461

    [27]

    龙继东, 陈林, 丰树平 2019 高能量密度物理 2 42

    Long J D, Chen L, Feng S P, 2019 High Energy Dens. Phys. 2 42

    [28]

    陈林, 丰树平, 高顺受 2004 中国科学 34 458

    Chen L, Feng S P, Gao S S 2004 Sci. China 34 458

    [29]

    李名加, 范娟, 章法强 2018 强激光与粒子束 30 129Google Scholar

    Li M J, Fan J, Zhang F Q 2018 High Power Laser Part. Beams 30 129Google Scholar

    [30]

    郭洪生, 杨高照, 朱学彬 2012 核电子学与探测技术 32 880Google Scholar

    Guo H S, Yang G Z, Zhu X B 2012 Nucl. Electron. Detection Tech. 32 880Google Scholar

    [31]

    Xi H, Liang C, Zhang F 2021 J. Instrum. 16 P12021Google Scholar

    [32]

    谈效华, 戴晶怡, 米伦, 黄华国, 谢超美, 周明贵 2004 第三届北京核学会核应用技术学术交流会

    Tan X H, Dai J Y, Mi L, Huang H G, Xie C M, Zhou M G 2004 The 3rd Beijing Nuclear Society Nuclear Application Technology Academic Exchange meeting

    [33]

    Haines M 2011 Plasma Phys. Control. Fusion 53 093001Google Scholar

    [34]

    Auluck S, Kunes P, Paduch M, Sadowski M J, Krauz V I, Lee S, Soto L, Scholz M, Miklaszewski R, Schmidt H, Blagoev A, Samuelli M, Seng Y S, Springham S V, Talebitaher A, Pavez C, Akel M, Yap S L, Verma R, Kolacek, Keat P L C, Rawat R S, Abdou A, Zhang G X, Laas T 2021 Plasma 4 450Google Scholar

    [35]

    Hart P J 1962 Phys. Fluids 5 38Google Scholar

    [36]

    Lee S 2014 J. Fusion Energy 33 319Google Scholar

    [37]

    Potter D 1971 Phys. Fluids 14 1911Google Scholar

    [38]

    Garanin S F, Mamyshev V I 2008 Plasma Phys. Rep. 34 639Google Scholar

    [39]

    Meehan B T, Niederhau H 2016 JDMS 13 153

    [40]

    Schmidt A, Tang V, Welch D 2012 Phys. Rev. Lett. 109 205003Google Scholar

    [41]

    Schmidt A, Link A, Welch D 2014 Phys. Plasmas 21 102703Google Scholar

    [42]

    Angus J, Link A, Schmid A 2021 Phys. Plasmas 28 010701Google Scholar

    [43]

    刘全 2002 博士学位论文(北京: 中国工程物理研究院研究生院)

    Liu Q 2002, Ph. D. Dissertation (Beijing: Graduate School of China Academy of Engineering Physics

    [44]

    Braginskii S 1965 Rev. Plasma Phys. 1 205

    [45]

    Lim L H, Yap S, Lim L K, Lee M C, Poh H S, Ma J, Yap S S, Lee S 2015 Phys. Plasmas 22 092702Google Scholar

  • [1] Li Shang-Qing, Wang Wei-Min, Li Yu-Tong. Development and application of OpenFOAM based magnetohydrodynamic solver. Acta Physica Sinica, 2022, 71(11): 119501. doi: 10.7498/aps.71.20212432
    [2] Wang Ya-Nan, Ren Lin-Yuan, Ding Wei-Dong, Sun An-Bang, Geng Jin-Yue. Influence of cavity configuration parameters on discharge characteristics of capillary discharge based pulsed plasma thruster. Acta Physica Sinica, 2021, 70(23): 235204. doi: 10.7498/aps.70.20211198
    [3] Zhang Zheng-Wei, Wang Gui-Lin, Zhang Shao-Long, Sun Qi-Zhi, Liu Wei, Zhao Xiao-Ming, Jia Yue-Song, Xie Wei-Ping. Application of electrical action to design and analysis of magnetically driven solid liner implosion. Acta Physica Sinica, 2020, 69(5): 050701. doi: 10.7498/aps.69.20191690
    [4] Yuan Xiao-Xia, Zhong Jia-Yong. Simulations for two colliding plasma bubbles embedded into an external magnetic field. Acta Physica Sinica, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [5] Yang Zheng-Quan, Li Cheng, Lei Yi-An. Magnetohydrodynamic simulation of conical plasma compression. Acta Physica Sinica, 2016, 65(20): 205201. doi: 10.7498/aps.65.205201
    [6] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Simulation of Z-pinch Al plasma radiation and correction with considering superposition effect. Acta Physica Sinica, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [7] Feng Zhi-Xing, Ning Cheng, Xue Chuang, Li Bai-Wen. Physical investigation of dynamic process of the gas-puff Z-pinch through particle-in-cell simulation. Acta Physica Sinica, 2014, 63(18): 185203. doi: 10.7498/aps.63.185203
    [8] Zhou Lin, Xue Fei-Biao, Si Fen-Ni, Yang Jian-Lun, Ye Fan, Xu Rong-Kun, Hu Qing-Yuan, Fu Yue-Cheng, Jiang Shu-Qiang, Li Lin-Bo, Chen Jin-Chuan, Xu Ze-Ping. Experimental sduty of current distribution in wirearray Zpinch plasma. Acta Physica Sinica, 2012, 61(19): 195207. doi: 10.7498/aps.61.195207
    [9] Gao Qi, Wu Ze-Qing, Zhang Chuan-Fei, Li Zheng-Hong, Xu Rong-Kun, Zu Xiao-Tao. The nonlocal thermal equilibrium simulation of Z-pinch Al plasma radiation. Acta Physica Sinica, 2012, 61(1): 015201. doi: 10.7498/aps.61.015201
    [10] Wu Gang, Qiu Ai-Ci, Wang Liang-Ping, Lü Min, Qiu Meng-Tong, Cong Pei-Tian. Study on K-shell X-ray production of double-shellneon gas puff Z-pinch. Acta Physica Sinica, 2011, 60(1): 015203. doi: 10.7498/aps.60.015203
    [11] Gu Yu-Qiu, Ma Zhan-Nan, Zheng Wu-Di, Wang Xiao-Fang, Wu Yu-Chi, Zhu Bin, Dong Ke-Gong, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Zhang Bao-Han, Jiao Chun-Ye, Wen Xian-Lun, Zang Hua-Ping, Yu Jin-Qing, Wei Lai. Density measurement and MHD simulation ofgas-filled capillary discharge waveguide. Acta Physica Sinica, 2011, 60(9): 095202. doi: 10.7498/aps.60.095202
    [12] Huang Jun, Sun Shun-Kai, Xiao De-Long, Ding Ning, Ning Cheng, Zhang Yang, Xue Chuang. Two-dimensional numerical studies of ablated-plasma dynamics of wire-array Z-pinches. Acta Physica Sinica, 2010, 59(9): 6351-6361. doi: 10.7498/aps.59.6351
    [13] Ye Fan, Xue Fei-Biao, Guo Cun, Li Zheng-Hong, Yang Jian-Lun, Xu Rong-Kun, Zhang Fa-Qiang, Jin Yong-Jie. Utilization of convex crystal spectrograph to obtain monochromatic X-ray images of Z-pinch plasmas. Acta Physica Sinica, 2008, 57(3): 1792-1795. doi: 10.7498/aps.57.1792
    [14] Zhang Yang, Ding Ning. The effect of axial flow on the stability in the Z-pinch. Acta Physica Sinica, 2006, 55(5): 2333-2339. doi: 10.7498/aps.55.2333
    [15] Qiu Ai-Ci, Kuai Bin, Zeng Zheng-Zhong, Wang Wen-Sheng, Qiu Meng-Tong, Wang Liang-Ping, Cong Pei-Tian, Lü Min. Study on W wire array Z pinch plasma radiation at Qiangguang-Ⅰ facility. Acta Physica Sinica, 2006, 55(11): 5917-5922. doi: 10.7498/aps.55.5917
    [16] Zou Xiao-Bing, Wang Xin-Xin, Luo Cheng-Mu, Han Min. Energy spectra of ion beams from gas-puff Z-pinch plasma. Acta Physica Sinica, 2005, 54(5): 2133-2137. doi: 10.7498/aps.54.2133
    [17] Duan Yao-Yong, Guo Yong-Hui, Wang Wen-Sheng, Qiu Ai-Ci. Numerical investigations of Z-pinch plasma instabilities. Acta Physica Sinica, 2004, 53(10): 3429-3434. doi: 10.7498/aps.53.3429
    [18] Duan Yao-Yong, Guo Yong-Hui, Wang Wen-Sheng, Qiu Ai-Ci. Numerical simulation of tungsten wire-array pinch plasma. Acta Physica Sinica, 2004, 53(8): 2654-2660. doi: 10.7498/aps.53.2654
    [19] LI YU-TONG, ZHANG JIE, CHEN LI-MING, XIA JIANG-FAN, TENG HAO, WEI ZHI-YI, JIANG WEN-MIAN. OBSERVATION OF THE TRANSVERSE PINCH OF THE EXPANSION OF AN FEMTOSECOND LASER-PLA SMA. Acta Physica Sinica, 2000, 49(7): 1400-1403. doi: 10.7498/aps.49.1400
    [20] . Acta Physica Sinica, 1975, 24(5): 309-316. doi: 10.7498/aps.24.309
Metrics
  • Abstract views:  360
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  12 January 2025
  • Accepted Date:  24 March 2025
  • Available Online:  14 April 2025
  • Published Online:  05 June 2025

/

返回文章
返回
Baidu
map