-
During reentry of hypersonic spacecraft into the atmosphere, a break in the radio communication due to the presence of a plasma sheath on the spacecraft can occur. The break is commonly known as reentry communication blackout. Normally, for high density plasma, it is difficult for the electromagnetic waves of L and S bands to penetrate through. They may be decayed rapidly or reflected. That is why reentry communication blackout happens. In recent years, initiative methods are used to reduce the effects of reentry communication blackout such as by designing ideal shape for reentry vehicle, sprinkling special substances on the surface of the vehicle to improve efficiency of electromagnetic wave, adding magnetic field within the blackout area, etc. However, these methods not only fail to fully resolve the problems caused by blackout but also bring some new ones. Therefore, to resolve the problems, transmission mechanism of electromagnetic waves in plasmons should be analyzed. In this paper, we use the finite difference time domain, consider the mechanism of electromagnetic waves in a structure consisting of high-density plasma rods, and refer to the two-dimensional (2D) photonic crystal and surface wave local coupling theory. A new type of high-density plasma micro-rod cavity structure is designed. The special structure, consisting of metal cavity, high-density plasma rod, and dielectric medium filled within the cavity, is quite different from traditional 2D sub-wavelength plasma rod arrays. This kind of design takes advantage of cavity structure to couple electromagnetic wave within the plasma rod so that the surface wave diffraction transmission mode can be changed into a local coupling enhancement penetrating mode. In this paper, we investigate the plasma micro-rod cavity structures with two shapes:cylinder and square, respectively. It is found that electromagnetic waves of L and S bands can have unusual transmission properties in certain frequency ranges, such that electromagnetic waves can pass through the interior of the high-density plasma rod.
-
Keywords:
- high-density plasma rod /
- photonic crystal /
- surface wave local coupling /
- transmission mode
[1] Sakai O, Sakaguchi T, Tachibana K 2007 Contrib. Plasma Phys. 47 96
[2] Sakai O, Sakaguchi T, Tachibana K 2005 Appl. Phys. Lett. 87 241505
[3] Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445
[4] Savino R 2010 Open Aerospace Engineer. J. 3 76
[5] Thoma C, Rose D V, Miller C L, Clark R E, Hughes T P 2009 J. Appl. Phys. 106 043301
[6] Sakai O, Sakaguchi T, Tachibana K 2007 J. Appl. Phys. 101 0733041
[7] Sakaguchi T, Sakai O, Tachibana K 2007 Appl. Phys. 101 0733051
[8] Sakai O, Sakaguchi T, Ito Y, Tachibana K 2005 Plasma Phys. 47 B617
[9] Zhong S Y, Liu S 2009 Chin. J. Comput. Phys. 26 3 (in Chinese) [钟双英, 刘崧2009 计算物理26 3]
[10] Xia X R, Huang Y, Yin C Y 2009 Aerospace Shanghai 1 12 (in Chinese) [夏新仁, 黄冶, 尹成友2009 上海航天112]
[11] Zheng L, Zhao Q, Luo X G, Ma P, Liu S Z 2012 Acta Phys. Sin. 61 155203(in Chinese) [郑灵, 赵青, 罗先刚, 马平, 刘述章 2012 61 155203]
[12] Yang M, Li X P, Liu Y M, Shi L 2014 Acta Phys. Sin. 63 085201(in Chinese) [杨敏, 李小平, 刘彦明, 石磊 2014 63 085201]
[13] Zheng L 2013 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [郑灵2013 博士学位论文(成都: 电子科技大学)]
[14] Toader O, John S 2004 Phys. Rev. E. 70 0466051
[15] Chern R L, Chang C C, Chang C C 2006 Phys. Rev. E.73 0366051
[16] Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780
[17] Li X, Yang L, Hu C, Luo X, Hong M 2011 Opt. Express 19 5283
[18] Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396
[19] Luo X 2015 Science China Physics, Mechanics Astronomy 58 594201
[20] Zhao Y, Huang C, Qing A, Luo X 2015 IEEE Photonics J. 99 1
[21] Yang Y C 2010 M. S. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese) [杨永常 2010 硕士学位论文 (南京: 南京航空航天大学)]
[22] Schexnayder C J, Evans J S, Huber P W 1970 NASA SP-252 277
-
[1] Sakai O, Sakaguchi T, Tachibana K 2007 Contrib. Plasma Phys. 47 96
[2] Sakai O, Sakaguchi T, Tachibana K 2005 Appl. Phys. Lett. 87 241505
[3] Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445
[4] Savino R 2010 Open Aerospace Engineer. J. 3 76
[5] Thoma C, Rose D V, Miller C L, Clark R E, Hughes T P 2009 J. Appl. Phys. 106 043301
[6] Sakai O, Sakaguchi T, Tachibana K 2007 J. Appl. Phys. 101 0733041
[7] Sakaguchi T, Sakai O, Tachibana K 2007 Appl. Phys. 101 0733051
[8] Sakai O, Sakaguchi T, Ito Y, Tachibana K 2005 Plasma Phys. 47 B617
[9] Zhong S Y, Liu S 2009 Chin. J. Comput. Phys. 26 3 (in Chinese) [钟双英, 刘崧2009 计算物理26 3]
[10] Xia X R, Huang Y, Yin C Y 2009 Aerospace Shanghai 1 12 (in Chinese) [夏新仁, 黄冶, 尹成友2009 上海航天112]
[11] Zheng L, Zhao Q, Luo X G, Ma P, Liu S Z 2012 Acta Phys. Sin. 61 155203(in Chinese) [郑灵, 赵青, 罗先刚, 马平, 刘述章 2012 61 155203]
[12] Yang M, Li X P, Liu Y M, Shi L 2014 Acta Phys. Sin. 63 085201(in Chinese) [杨敏, 李小平, 刘彦明, 石磊 2014 63 085201]
[13] Zheng L 2013 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [郑灵2013 博士学位论文(成都: 电子科技大学)]
[14] Toader O, John S 2004 Phys. Rev. E. 70 0466051
[15] Chern R L, Chang C C, Chang C C 2006 Phys. Rev. E.73 0366051
[16] Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780
[17] Li X, Yang L, Hu C, Luo X, Hong M 2011 Opt. Express 19 5283
[18] Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396
[19] Luo X 2015 Science China Physics, Mechanics Astronomy 58 594201
[20] Zhao Y, Huang C, Qing A, Luo X 2015 IEEE Photonics J. 99 1
[21] Yang Y C 2010 M. S. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese) [杨永常 2010 硕士学位论文 (南京: 南京航空航天大学)]
[22] Schexnayder C J, Evans J S, Huber P W 1970 NASA SP-252 277
Catalog
Metrics
- Abstract views: 6134
- PDF Downloads: 244
- Cited By: 0