搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维范德瓦尔斯异质结构的制备与物性研究

吴燕飞 朱梦媛 赵瑞杰 刘心洁 赵云驰 魏红祥 张静言 郑新奇 申见昕 黄河 王守国

引用本文:
Citation:

二维范德瓦尔斯异质结构的制备与物性研究

吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国

The fabrication and physical properties of two-dimensional van der Waals heterostructures

Wu Yan-Fei, Zhu Meng-Yuan, Zhao Rui-Jie, Liu Xin-Jie, Zhao Yun-Chi, Wei Hong-Xiang, Zhang Jing-Yan, Zheng Xin-Qi, Shen Jian-Xin, Huang He, Wang Shou-Guo
PDF
HTML
导出引用
  • 二维范德瓦尔斯材料(可简称二维材料)已发展成为备受瞩目的材料大家族, 而由其衍生的二维范德瓦尔斯异质结构的集成、性能及应用是现今凝聚态物理和材料科学领域的研究热点之一. 二维范德瓦尔斯异质结构为探索丰富多彩的物理效应和新奇的物理现象, 以及构建新型的自旋电子学器件提供了灵活而广阔的平台. 本文从二维材料的转移技术着手, 介绍二维范德瓦尔斯异质结构的构筑、性能及应用. 首先, 依据湿法转移和干法转移的分类, 详细介绍二维范德瓦尔斯异质结构的制备技术, 内容包括转移技术的通用设备、常用转移方法的具体操作步骤、三维操纵二维材料的方法、异质界面清洁. 随后介绍二维范德瓦尔斯异质结构的性能和应用, 重点介绍二维磁性范德瓦尔斯异质结构, 并列举在二维范德瓦尔斯磁隧道结和摩尔超晶格领域的应用. 因此, 二维材料转移技术的发展和优化将进一步助力二维范德瓦尔斯异质结构在基础科学研究和实际应用上取得突破性的成果.
    Two-dimensional van der Waals materials (2D materials for short) have developed into a novel material family that has attracted much attention, and thus the integration, performance and application of 2D van der Waals heterostructures has been one of the research hotspots in the field of condensed matter physics and materials science. The 2D van der Waals heterostructures provide a flexible and extensive platform for exploring diverse physical effects and novel physical phenomena, as well as for constructing novel spintronic devices. In this topical review article, starting with the transfer technology of 2D materials, we will introduce the construction, performance and application of 2D van der Waals heterostructures. Firstly, the preparation technology of 2D van der Waals heterostructures in detail will be presented according to the two classifications of wet transfer and dry transfer, including general equipment for transfer technology, the detailed steps of widely used transfer methods, a three-dimensional manipulating method for 2D materials, and hetero-interface cleaning methods. Then, we will introduce the performance and application of 2D van der Waals heterostructures, with a focus on 2D magnetic van der Waals heterostructures and their applications in the field of 2D van der Waals magnetic tunnel junctions and moiré superlattices. The development and optimization of 2D materials transfer technology will boost 2D van der Waals heterostructures to achieve breakthrough results in fundamental science research and practical application.
      通信作者: 王守国, sgwang@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51625101, 51971026, 52071026, 52130103, 12174426)和中央高校基本科研业务费(批准号: 06500140, FRF-MP-20-05)资助的课题.
      Corresponding author: Wang Shou-Guo, sgwang@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51625101, 51971026, 52071026, 52130103, 12174426) and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 06500140, FRF-MP-20-05).
    [1]

    Das S, Robinson J A, Dubey M, Terrones H, Terrones M (Clarke D R Ed.) 2015 Annu. Rev. Mater. Res. 45 1Google Scholar

    [2]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 Acs Nano 7 2898Google Scholar

    [3]

    Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S, Gao C 2019 Science 366 983Google Scholar

    [4]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [5]

    Huang Y, Pan Y H, Yang R, Bao L H et al. 2020 Nat. Commun. 11 2453Google Scholar

    [6]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [7]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [8]

    Gao Y, Yin Q, Wang Q, Li Z, Cai J, Zhao T, Lei H, Wang S, Zhang Y, Shen B 2020 Adv. Mater. 32 2005228Google Scholar

    [9]

    Jiang X, Liu Q, Xing J, Liu N, Guo Y, Liu Z, Zhao J 2021 Appl. Phys. Rev. 8 031305Google Scholar

    [10]

    Peng L, Yuan Y, Li G, Yang X, Xian J J, Yi C J, Shi Y G, Fu Y S 2017 Nat. Commun. 8 659Google Scholar

    [11]

    何 聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国 2021 70 127501Google Scholar

    He C L, Xu H J, Tang J, Wang X, Wei J W, Shen S P, Chen Q Q, Shao Q M, Yu G Q, Zhang G Y, Wang S G 2021 Acta Phys. Sin. 70 127501Google Scholar

    [12]

    姚 文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻 2021 70 027901Google Scholar

    Yao W Q, Sun J Z, Chen J Y, Guo Y L, Wu B, Liu Y Q [ 2021 70 2021 Acta Phys. Sin. 70 027901Google Scholar

    [13]

    Chang C, Chen W, Chen Y, Chen Y H, et al. 2021 Acta Phys. -Chim. Sin. 37 2108017Google Scholar

    [14]

    Liu Y, Zhang S, He J, Wang Z M, Liu Z 2019 Nano-Micro Lett. 11 13Google Scholar

    [15]

    Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A et al. 2017 Nat. Nanotechnol. 12 223Google Scholar

    [16]

    Tsen A W, Hunt B, Kim Y D, Yuan Z J, Jia S, Cava R J, Hone J, Kim P, Dean C R, Pasupathy A N 2016 Nat. Phys. 12 208Google Scholar

    [17]

    Lee C-H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [18]

    Massicotte M, Schmidt P, Vialla F, Schaedler K G, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij K J, Koppens F H L 2016 Nat. Nanotechnol. 11 42Google Scholar

    [19]

    Fallahazad B, Movva H C P, Kim K, Larentis S, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2016 Phys. Rev. Lett. 116 086601Google Scholar

    [20]

    Wu Y, Zhang S, Zhang J, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C, Han X, Shao Q, Taniguchi T, Watanabe K, Zang J, Mao Z, Zhang X, Wang K L 2020 Nat. Commun. 11 3860Google Scholar

    [21]

    Liu Y, Guo J, Zhu E, Liao L, Lee S-J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696Google Scholar

    [22]

    Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar

    [23]

    王慧, 徐萌, 郑仁奎 2020 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [24]

    杨维, 韩江朝, 曹元, 林晓阳, 赵巍胜 2021 70 129101Google Scholar

    Yang W, Han J C, Cao Y, Lin X Y, Zhao W S 2021 Acta Phys. Sin. 70 129101Google Scholar

    [25]

    Zhou X, Hu X, Yu J, Liu S, Shu Z, Zhang Q, Li H, Ma Y, Xu H, Zhai T 2018 Adv. Funct. Mater. 28 1706587Google Scholar

    [26]

    Sanchez O L, Ovchinnikov D, Misra S, Allain A, Kis A 2016 Nano Lett. 16 5792Google Scholar

    [27]

    Chu Y, Liu L, Yuan Y, Shen C, Yang R, Shi D, Yang W, Zhang G 2020 Chinese Phys. B 29 128104Google Scholar

    [28]

    Wang X, Cui Y, Li T, Lei M, Li J, Wei Z 2019 Adv. Opt. Mater. 7 1801274Google Scholar

    [29]

    Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Song Y I, Hong B H, Ahn J H 2010 Nano Lett. 10 490Google Scholar

    [30]

    Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L, Ruoff R S 2009 Nano Lett. 9 4359Google Scholar

    [31]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [32]

    Shi J, Ma D, Han G F, Zhang Y, Ji Q, Gao T, Sun J, Song X, Li C, Zhang Y, Lang X Y, Zhang Y, Liu Z 2014 Acs Nano 8 10196Google Scholar

    [33]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30Google Scholar

    [34]

    Reina A, Son H, Jiao L, Fan B, Dresselhaus M S, Liu Z, Kong J 2008 J. Phys. Chem. C 112 17741Google Scholar

    [35]

    Schneider G F, Calado V E, Zandbergen H, Vandersypen L M K, Dekker C 2010 Nano Lett. 10 1912Google Scholar

    [36]

    Li H, Wu J, Huang X, Yin Z, Liu J, Zhang H 2014 Acs Nano 8 6563Google Scholar

    [37]

    Gurarslan A, Yu Y, Su L, Yu Y, Suarez F, Yao S, Zhu Y, Ozturk M, Zhang Y, Cao L 2014 Acs Nano 8 11522Google Scholar

    [38]

    Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017 Acs Nano 11 12001Google Scholar

    [39]

    Zhang Z, Ji X, Shi J, Zhou X, Zhang S, Hou Y, Qi Y, Fang Q, Ji Q, Zhang Y, Hong M, Yang P, Liu X, Zhang Q, Liao L, Jin C, Liu Z, Zhang Y 2017 Acs Nano 11 4328Google Scholar

    [40]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L-P, Zhang Z, Fu Q, Peng L M, Bao X, Cheng H M 2012 Nat. Commun. 3 699Google Scholar

    [41]

    Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P 2011 Acs Nano 5 9927Google Scholar

    [42]

    Yang X, Li X, Deng Y, Wang Y, Liu G, Wei C, Li H, Wu Z, Zheng Q, Chen Z, Jiang Q, Lu H, Zhu J 2019 Adv. Funct. Mater. 29 1902427Google Scholar

    [43]

    Jain A, Bharadwaj P, Heeg S, Parzefall M, Taniguchi T, Watanabe K, Novotny L 2018 Nanotechnology 29 265203Google Scholar

    [44]

    Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, van der Zant H S J, Steele G A 2014 2D Mater. 1 011002Google Scholar

    [45]

    Zomer P J, Guimarães M H D, Brant J C, Tombros N, Wees B J v 2014 Appl. Phys. Lett. 105 013101Google Scholar

    [46]

    Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C, Lombardo A 2018 Nat. Commun. 9 5387Google Scholar

    [47]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [48]

    Wang J I J, Yang Y, Chen Y A, Watanabe K, Taniguchi T, Churchill H O H, Jarillo-Herrero P 2015 Nano Lett. 15 1898Google Scholar

    [49]

    Zomer P J, Dash S P, Tombros N, van Wees B J 2011 Appl. Phys. Lett. 99 232104Google Scholar

    [50]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar

    [51]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [52]

    Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G, Rogers J A 2006 Nat. Mater. 5 33Google Scholar

    [53]

    Pedrinazzi P, Caridad J M, Mackenzie D M A, Pizzocchero F, Gammelgaard L, Jessen B S, Sordan R, Booth T J, Boggild P 2018 Appl. Phys. Lett. 112 033101Google Scholar

    [54]

    Leon J A, Mamani N C, Rahim A, Gomez L E, Silva M A P d, Gusev G M 2014 Graphene 03 25Google Scholar

    [55]

    Fan S, Vu Q A, Tran M D, Adhikari S, Lee Y H 2020 2D Mater. 7 022005Google Scholar

    [56]

    Zhou W, Chen M, Guo M, Hong A, Yu T, Luo X, Yuan C, Lei W, Wang S 2020 Nano Lett. 20 2923Google Scholar

    [57]

    van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar

    [58]

    Ly T H, Perello D J, Zhao J, Deng Q, Kim H, Han G H, Chae S H, Jeong H Y, Lee Y H 2016 Nat. Commun. 7 10426Google Scholar

    [59]

    Yu Q, Lian J, Siriponglert S, Li H, Chen Y P, Pei S S 2008 Appl. Phys. Lett. 93 113103Google Scholar

    [60]

    Zhuang B, Li S, Li S, Yin J 2021 Carbon 173 609Google Scholar

    [61]

    Song Y, Zou W, Lu Q, Lin L, Liu Z 2021 Small 2007600Google Scholar

    [62]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nature Nanotechnology 5 722

    [63]

    Bertolazzi S, Brivio J, Kis A 2011 Acs Nano 5 9703Google Scholar

    [64]

    Kretinin A V, Cao Y, Tu J S, Yu G L, Jalil R, Novoselov K S, Haigh S J, Gholinia A, Mishchenko A, Lozada M, Georgiou T, Woods C R, Withers F, Blake P, Eda G, Wirsig A, Hucho C, Watanabe K, Taniguchi T, Geim A K, Gorbachev R V 2014 Nano Lett. 14 3270Google Scholar

    [65]

    Taychatanapat T, Watanabe K, Taniguchi T, Jarillo-Herrero P 2011 Nat. Phys. 7 621Google Scholar

    [66]

    Schneider G F, Calado V E, Zandbergen H, Vandersypen L M, Dekker C 2010 Nano Letters 10 1912

    [67]

    Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017 ACS Nano 11 12001

    [68]

    Georgiou T, Britnell L, Blake P, Gorbachev R V, Gholinia A, Geim A K, Casiraghi C, Novoselov K S 2011 Appl. Phys. Lett. 99 093103Google Scholar

    [69]

    Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K, Gorbachev R 2012 Nat. Mater. 11 764Google Scholar

    [70]

    Pan W, Xiao J, Zhu J, Yu C, Zhang G, Ni Z, Watanabe K, Taniguchi T, Shi Y, Wang X 2012 Sci. Rep. 2 893Google Scholar

    [71]

    Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G, Rogers J A 2005 Nat. Mater. 5 33

    [72]

    Uwanno T, Hattori Y, Taniguchi T, Watanabe K, Nagashio K 2015 2D Mater. 2 041002Google Scholar

    [73]

    Wang J I, Yang Y, Chen Y A, Watanabe K, Taniguchi T, Churchill H O, Jarillo-Herrero P 2015 Nano Letters 15 1898

    [74]

    Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C, Xu X 2017 Sci. Adv. 3 e1603113Google Scholar

    [75]

    Kinoshita K, Moriya R, Onodera M, Wakafuji Y, Masubuchi S, Watanabe K, Taniguchi T, Machida T 2019 Npj 2D Mater. Appl. 3 22Google Scholar

    [76]

    Pedrinazzi P, Caridad J M, Mackenzie D M A, Pizzocchero F, Gammelgaard L, Jessen B S, Sordan R, Booth T J, Bøggild P 2018 Appl. Phys. Lett. 112 033101

    [77]

    Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B, Stampfer C 2015 Sci. Adv. 1 e1500222Google Scholar

    [78]

    Banszerus L, Schmitz M, Engels S, Goldsche M, Watanabe K, Taniguchi T, Beschoten B, Stampfer C 2016 Nano Lett. 16 1387Google Scholar

    [79]

    De Fazio D, Purdie D G, Ott A K, Braeuninger-Weimer P, Khodkov T, Goossens S, Taniguchi T, Watanabe K, Livreri P, Koppens F H L, Hofmann S, Goykhman I, Ferrari A C, Lombardo A 2019 ACS Nano 13 8926Google Scholar

    [80]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar

    [81]

    Wakafuji Y, Moriya R, Masubuchi S, Watanabe K, Taniguchi T, Machida T 2020 Nano Lett. 20 2486Google Scholar

    [82]

    Uwanno T, Hattori Y, Taniguchi T, Watanabe K, Nagashio K 2015 2D Mater. 2 041002

    [83]

    Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K, Gorbachev R 2012 Nature Materials 11 764

    [84]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [85]

    Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C, Lombardo A 2018 Nature Commun. 9 5387

    [86]

    Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Boggild P, Booth T J 2016 Nat. Commun. 7 11894Google Scholar

    [87]

    Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C, Lombardo A 2018 Nature Communications 9 5387

    [88]

    Toyoda S, Uwanno T, Taniguchi T, Watanabe K, Nagashio K 2019 Appl. Phys. Express 12 055008Google Scholar

    [89]

    Iwasaki T, Endo K, Watanabe E, Tsuya D, Morita Y, Nakaharai S, Noguchi Y, Wakayama Y, Watanabe K, Taniguchi T, Moriyama S 2020 Acs Appl. Mater. Interfaces 12 8533Google Scholar

    [90]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [91]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H, Xu X 2018 Nat. Mater. 17 778Google Scholar

    [92]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [93]

    Burch K S, Mandrus D, Park J G 2018 Nature 563 47Google Scholar

    [94]

    Gong C, Zhang X 2019 Science 363 eaav4450

    [95]

    Bevin H, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Natures 546 270

    [96]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Natures 546 265

    [97]

    Zhang L, Huang X, Dai H, Wang M, Cheng H, Tong L, Li Z, Han X, Wang X, Ye L, Han J 2020 Adv. Mater. 32 e2002032Google Scholar

    [98]

    Tang C, Zhang Z, Lai S, Tan Q, Gao W B 2020 Adv. Mater. 32 e1908498Google Scholar

    [99]

    Rahman S, Liu B, Wang B, Tang Y, Lu Y 2021 ACS Appl. Mater. Interfaces 13 7423Google Scholar

    [100]

    Zhong D, Seyler K L, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, McGuire M A, Fu K C, Xiao D, Yao W, Xu X 2020 Nat. Nanotechnol. 15 187Google Scholar

    [101]

    Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K C, Xu X 2018 Nano Lett. 18 3823Google Scholar

    [102]

    Wu Y, Cui Q, Zhu M, Liu X, Wang Y, Zhang J, Zheng X, Shen J, Cui P, Yang H, Wang S 2021 ACS Appl. Mater. Interfaces 13 10656Google Scholar

    [103]

    Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar

    [104]

    Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G, Han X 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [105]

    Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [106]

    Ponomarenko L A, Geim A K, Zhukov A A, Jalil R, Morozov S V, Novoselov K S, Grigorieva I V, Hill E H, Cheianov V V, Fal’ko V I, Watanabe K, Taniguchi T, Gorbachev R V 2011 Nat. Phys. 7 958Google Scholar

    [107]

    Rivera P, Schaibley J R, Jones A M, Ross J S, Wu S, Aivazian G, Klement P, Seyler K, Clark G, Ghimire N J, Yan J, Mandrus D G, Yao W, Xu X 2015 Nat. Commun. 6 6242Google Scholar

    [108]

    Ceballos F, Bellus M Z, Chiu H-Y, Zhao H 2014 Acs Nano 8 12717Google Scholar

    [109]

    Kim J, Jin C, Chen B, Cai H, Zhao T, Lee P, Kahn S, Watanabe K, Taniguchi T, Tongay S, Crommie M F, Wang F 2017 Sci. Adv. 3 e1700518Google Scholar

    [110]

    Jin C, Kim J, Utama M I B, Regan E C, Kleemann H, Cai H, Shen Y, Shinner M J, Sengupta A, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2018 Science 360 893Google Scholar

    [111]

    Kozawa D, Carvalho A, Verzhbitskiy I, Giustiniano F, Miyauchi Y, Mouri S, Castro Neto A H, Matsuda K, Eda G 2016 Nano Lett. 16 4087Google Scholar

    [112]

    Dai H, Cheng H, Cai M, Hao Q, Xing Y, Chen H, Chen X, Wang X, Han J B 2021 ACS Appl. Mater. Interfaces 13 24314Google Scholar

    [113]

    Piquemal-Banci M, Galceran R, Martin M B, Godel F, Anane A, Petroff F, Dlubak B, Seneor P 2017 J. Phys. D Appl. Phys. 50 203002Google Scholar

    [114]

    Zhang L, Zhou J, Li H, Shen L, Feng Y P 2021 Appl. Phys. Rev. 8 021308Google Scholar

    [115]

    De Teresa J M, Barthelemy, Fert, Contour, Montaigne, Seneor 1999 Science 286 507Google Scholar

    [116]

    Velev J P, Dowben P A, Tsymbal E Y, Jenkins S J, Caruso A N 2008 Surf. Sci. Rep. 63 400Google Scholar

    [117]

    Dayen J F, Ray S J, Karis O, Vera-Marun I J, Kamalakar M V 2020 Appl. Phys. Rev. 7 011303Google Scholar

    [118]

    Ahn E C 2020 NPJ 2D Mater. Appl. 4 17Google Scholar

    [119]

    Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X 2018 Science 360 1214Google Scholar

    [120]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Natures 563 94

    [121]

    Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218Google Scholar

    [122]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [123]

    Yamaguchi T, Inoue Y, Masubuchi S, Morikawa S, Onuki M, Watanabe K, Taniguchi T, Moriya R, Machida T 2013 Appl. Phys. Express 6 073001Google Scholar

    [124]

    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo A F 2018 Nano Lett. 18 4303Google Scholar

    [125]

    Zhang L, Li T, Li J, Jiang Y, Yuan J, Li H 2020 J. Phys. Chem. C 124 27429Google Scholar

    [126]

    Albarakati S, Tan C, Chen Z J, Partridge J G, Zheng G, Farrar L, Mayes E L H, Field M R, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton A R, Tretiakov O A, Culcer D, Zhao Y J, Wang L 2019 Sci. Adv. 5 eaaw0409Google Scholar

    [127]

    Zhou H, Zhang Y, Zhao W 2021 Acs Appl. Mater. Interfaces 13 1214Google Scholar

    [128]

    Xiao Y, Liu J, Fu L 2020 Matter 3 1142Google Scholar

    [129]

    Abbas G, Li Y, Wang H, Zhang W X, Wang C, Zhang H 2020 Adv. Funct. Mater. 30 2000878Google Scholar

    [130]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [131]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [132]

    Brihuega I, Mallet P, González-Herrero H, Trambly de Laissardière G, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F, Veuillen J Y 2012 Phys. Rev. Lett. 109 196802Google Scholar

    [133]

    Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K, Andrei E Y 2011 Phys. Rev. Lett. 106 126802Google Scholar

    [134]

    Jin C, Regan E C, Yan A, Utama M I B, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [135]

    Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520Google Scholar

    [136]

    董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国 2018 67 137507Google Scholar

    Dong B W, Zhang J Y, Peng L C, He M, Zhang Y, Zhao Y C, Wang C, Sun Y, Cai J W, Wang W H, Wei H X, Shen B G, Jiang Y, Wang S G 2018 Acta Phys. Sin. 67 137507Google Scholar

    [137]

    Shang J, Tang X, Tan X, Du A, Liao T, Smith S C, Gu Y, Li C, Kou L 2019 ACS Appl. Nano Mater. 3 1282

    [138]

    Tong Q, Liu F, Xiao J, Yao W 2018 Nano Lett. 18 7194Google Scholar

    [139]

    Wu Y, Zhang S, Zhang J, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C, Han X, Shao Q, Taniguchi T, Watanabe K, Zang J, Mao Z, Zhang X, Wang K L 2020 Nature Communications 11 3860

    [140]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [141]

    Kha T, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

  • 图 1  干法转移所用的设备示意图

    Fig. 1.  Schematic diagram of the experimental setup for dry transfer.

    图 2  PMMA为转移介质的基体刻蚀法

    Fig. 2.  Substrate etching method with PMMA as transfer medium.

    图 3  PMMA/牺牲层或者PMMA支持层的转移法[51]

    Fig. 3.  PMMA/sacrificial layer or PMMA supporting layer method[51].

    图 4  液体楔入的转移法

    Fig. 4.  Liquid wedging method.

    图 5  基于PDMS的全干性转移法[44]

    Fig. 5.  PDMS-based fully dry transfer method[44].

    图 6  基于PDMS/PC的转移方法

    Fig. 6.  PDMS/PC-based transfer method.

    图 7  基于PDMS/PPC的转移方法

    Fig. 7.  PDMS/PPC-based transfer method.

    图 8  热塑性牺牲层的转移法[49]

    Fig. 8.  Thermoplastic sacrificial layer transfer method[49].

    图 9  使用MDP实现二维材料的三维操纵[81]

    Fig. 9.  3D manipulation of 2D materials using MDP[81].

    图 10  三种典型的二维磁性材料及其特性 (a)、(b)为CrI3的晶体结构及磁学特性[95]: (a) CrI3的晶体结构; (b) 一层、两层、三层的CrI3在15 K下的磁光克尔(magneto-optical Kerr effect, MOKE)信号随着磁场的变化情况; (c)—(e)为CGT的晶体结构及特性[96]: (c) CGT的晶体结构; (d)不同层数的CGT的光学图片; (e)不同温度下(d)中CGT的MOKE信号; (f)—(h)[91]、(i)—(k)[92]均为FGT的晶体结构及特性: (f) FGT的晶体结构; (g) FGT的纵向电阻随着温度的变化关系, 左上角是霍尔器件的光学图片; (h) FGT的霍尔电阻随着温度的变化关系; (i) FGT的TC随着厚度的变化关系; (j)被固体电解质LiClO4覆盖的FGT的纵向电导率随着栅压的变化关系, 器件结构如(j)中插图所示; (k)不同温度下(j)中器件在Vg = 2.1 V时霍尔电压随着磁场的变化关系

    Fig. 10.  Three typical two-dimensional magnetic materials and their properties. (a) and (b) show the structure and magnetic properties of CrI3[95]: (a) Crystal structure of CrI3; (b) magnetic field dependence of the MOKE signal in monolayer, bilayer and trilayer CrI3 at 15 K. (c), (d) and (e) show the structure and properties of CGT[96]: (c) crystal structure of CGT; (d) optical images of CGT with different layers; (e) temperature dependence of the MOKE signal of CGT in (d); (f)–(h)[91] and (i)–(l)[92] all show the structure and properties of FGT: (f) crystal structure of FGT; (g) temperature dependence of the longitudinal resistance of FGT device. The upper-left inset shows an optical image of the Hall bar device; (h) temperature dependence of the Hall resistance of FGT device; (i) thickness dependence of the TC of FGT; (j) conductance as a function of gate voltage Vg measured in a trilayer FGT device covered by solid electrolyte LiClO4 and the inset shows the structure of the device; (k) Hall resistance of a four-layer FGT flake under a gate voltage of Vg = 2.1 V at different temperatures.

    图 11  基于PDMS全干性转移法制备的二维磁性范德瓦尔斯异质结构 (a)—(d)为FPS/FGT和FPS/FGT/FPS异质结构[97]: (a) FPS/FGT异质结构的光学图片; (b) FPS/FGT异质结构的原子力显微镜图; (c)—(d) 两种异质结构与单一FGT的Kerr信号随着温度的变化关系, 结果显示异质结构的形成可以有效提升TC; (e)—(h)为CrBr3/石墨烯的异质结构[98]: (e) CrBr3/石墨烯异质结构的光学图片; (f) 非局域测量技术探测塞曼自旋霍尔效应的示意图; (g)异质结构中石墨烯的非局域电阻在不同磁场下随栅压的变化情况; (h)非局域电阻随温度的变化情况. (i)—(l)为CGT/WS2异质结[99]: (i) CGT/WS2异质结构的光学图片; (j)单层的WS2和不同CGT/WS2异质结构的光致发光光谱; (k) 开尔文探针显微镜的示意图; (l) 室温下利用开尔文探针显微镜测量的CGT、WS2和异质结构的表面能或功函数

    Fig. 11.  Two-dimensional magnetic van der Waals heterostructures fabricated by all dry transfer method based on PDMS: (a)–(d) FPS/FGT and FPS/FGT/FPS heterostructures[97]: (a) Optical image of FPS/FGT heterostructure; (b) Atomic force microscopy image of the FPS/FGT heterostructure in (a); (c) and (d) temperature dependence of the Kerr signal between two kinds of heterostructures and individual FGT, and it shows effective enhancement of TC because of the fabrication of heterostructures; (e)–(h) CrBr3/graphene heterostructure[98]: (e) optical image of CrBr3/graphene heterostructure; (f) diagram of non-local measurements for probing Zeeman spin Hall effect; (g) the non-local resistance Rnl as a function of the back gate Vg acquired under different external field; (h) temperature dependence of the non-local resistance Rnl; (i)–(l) CGT/WS2 heterostructure[99]: (i)optical image of CGT/WS2 heterostructure; (j) Photoluminescence spectra (PL spectra) of individual WS2 and different CGT/WS2 heterostructures; (k) schematic diagram of Kelvin probe force microscopy; (l) measured surface potential or work function of CGT, WS2, and the heterostructure at room temperature.

    图 12  范德瓦尔斯作用力拾取的转移法制备的二维磁性范德瓦尔斯异质结构 (a)—(d)为WSe2/CrI3异质结构[100]: (a) 1L WSe2/3L CrI3的结构示意图; (b)在温度15 K和零磁场下的偏振分辨光致发光光谱; (c)、(d)分别为1 L WSe2/2 L CrI3的结构示意图以及左、右偏振光激发下的光致发光强度随着磁场的变化情况; (e)、(f)亦为WSe2/CrI3异质结[101]: (e) WSe2/CrI3异质结构的光学图片以及虚线框内的光致发光光谱强度分布; (f)通过不同强度的圆偏振光调控的光致发光光谱; (g)—(j)为CrCl3/双层石墨烯的异质结构[102]: (g)器件示意图; (h)一个真实器件的光学图片; (i) 在垂直磁场B= –14 T下双层石墨烯的量子霍尔效应; (j)无外磁场和外加垂直磁场下非局域磁阻测量结果

    Fig. 12.  Two-dimensional magnetic van der Waals heterostructures fabricated by van der Waals pick-up method. (a)–(d) WSe2/CrI3 heterostructure[100]: (a) Schematic of a monolayer WSe2 and trilayer CrI3 heterostructure; (b) polarization-resolved photoluminescence of a WSe2/trilayer CrI3 heterostructure at 15 K and zero magnetic field; (c) schematic of a monolayer WSe2 and bilayer CrI3 heterostructure; (d) photoluminescence intensity plot of σ+ (left) and σ (right) polarized excitation and detection as a function of magnetic field and photoenergy; (e) and (f) WSe2/CrI3 heterostructure[101]: (e) optical image of WSe2/CrI3 heterostructure and PL intensity in boxed region; (f) circularly polarized PL spectra at selected excitation powers; (g)–(j) CrCl3/BLG heterostructure[102]: (g) schematic of device; (h) optical image of an actual device; (i) quantum Hall effect at perpendicular magnetic field B= –14 T, showing typical quantum Hall plateaus of BLG; (j) magneto-transport nonlocal measurement results at zero and perpendicular magnetic fields.

    图 13  二维范德瓦尔斯磁隧道结 (a)—(c) 层状反铁磁CrI3的自旋过滤效应[119]: (a) 双层CrI3在无磁场、垂直磁场和平面磁场下的磁化状态, 其中在无磁场下能抑制隧穿电流; (b)石墨烯/CrI3/石墨烯的自旋过滤磁隧道结(sf-MTJs)的示意图, 顶层的BN作为保护层以提高器件的稳定性; (c)不同磁场条件下sf-MTJ 的隧穿电流, 其中势垒层为双层CrI3; (d), (e)一个4层CrI3的隧道结[121]: (d)一个4层 CrI3 隧道结的光学图像, 虚线显示隧道结区域; (e)在500 μV 交流激励下, 通过一个双层CrI3隧穿层的电导随垂直外加磁场的变化; (f), (g) FGT/hBN/ FGT隧道结[124]: (f)范德瓦尔斯异质结构示意图; (g)在温度T = 4.2 K下隧穿电阻随磁场(平行于FGT c-轴方向)的变化, 在B ≈ ± 0.7 T出现电阻急剧地跳跃, 隧穿磁阻变化达到~160 %; (h), (i) FGT/graphite/FGT异质结构的磁阻效应[126]: (h) 一个FGT/graphite/FGT的光学和AFM图像; (i)一个典型的GMR效应的输运现象示意图; (j), (k) CrTe2/石墨烯/CrTe2磁隧道结[127]: (j) 1T-CrTe2/三层石墨烯/1T-CrTe2 vdW MTJ的结构图; (k)两种vdW MTJ的隧穿磁阻率, 分别以未掺杂和掺杂的石墨烯作为势垒层, 隧穿磁阻率随着B掺杂的石墨烯(Gr–B)层数增加而增大

    Fig. 13.  2D van der Waals magnetic tunnel junctions. (a)–(c) Spin-filter effects in layered-antiferromagnetic CrI3[119]: (a) Schematic of magnetic states in bilayer CrI3. (Left) Layered-antiferromagnetic state suppresses the tunneling current at zero magnetic field; (b) schematic of graphene/CrI3/graphene sf-MTJ, with bilayer CrI3 as the spin-filter tunnel barrier; (c) tunneling current of a bilayer CrI3 sf-MTJ at selected magnetic fields; (d)–(e) a tetralayer CrI3 tunnel junction device[121]: (d) optical micrograph of a tetralayer CrI3 tunnel junction device. The dashed line encloses the tunnel junction area; (e) conductance through a bilayer CrI3 tunnel barrier as a function of an out-of-plane applied magnetic field with 500 μV AC excitation; (f), (g) FGT/hBN/ FGT MTJs[124]: (f) schematic representation of the van der Waals heterostructure; (g) Tunneling resistance measured at T = 4.2 K with B applied parallel to the FGT c-axis. Very sharp resistance jumps are observed for B ≈ ± 0.7 T, showing the variation in TMR is ~160 %; (h), (i) the MR effect in FGT/graphite/FGT heterostructures[126]: (h) optical and AFM images of an FGT/graphite/FGT heterostructure; (i) Schematic diagram for the transport behavior of a typical GMR effect; (j), (k) CrTe2/graphene/CrTe2 MTJs[127]: (j) structure of 1T-CrTe2/Graphene(3 ML)/1T-CrTe2 vdW MTJ; (k) TMR ratios of two vdW MTJs with graphene and doped graphene as barrier, showing TMR ratios increase with layer numbers of B-doped graphene.

    图 14  转角双层石墨烯的电子结构和非常规超导 (a)双层扭转石墨烯中的摩尔图形和(b)两层的两个 K (K' ) 波矢量之间的差异构成的迷你布里渊区[130]; (c)在魔角(θ = 1.08°)时出现的扁平带(蓝色)的电子结构, 和(d)在低温(T = 0.3 K)下测得的电导, 其中狄拉克点位于载流子n = 0位置, 较浅的阴影区指示n = ± ns = ± 2.7 × 1012 cm–2附近的超晶格能隙, 较暗的阴影区指示在± ns/2附近的半填充态; (e)双层扭转石墨烯的器件和四端法测量示意图, 及(f)观测到的非常规超导[131]

    Fig. 14.  Electronic structure and unconventional superconductivity of twisted bilayer graphene (TBG). (a) The moiré pattern in TBG; (b) the mini Brillouin zone (MBZ) is constructed from the difference between the two K (K′ ) wave vectors from the two layers[130]; (c) electronic band dispersion with a flat band of b); (d) measured conductance G of magic-angle TBG device with θ = 1.08° and T = 0.3 K. Dirac point is located at n = 0. The lighter shaded regions are superlattice gaps at carrier density n = ± ns = ± 2.7 × 1012 cm–2. The darker shaded regions denote half-filling states at ± ns/2; (e) schematic of a typical twisted bilayer graphene device and four-probe measurement scheme and (f) unconventional superconductivity of a magic-angle (θ = 1.08°) twisted graphene moiré superlattice[131].

    图 15  二维磁性材料的摩尔超晶格及拓扑磁结构 (a)为CrI3/CrGeTe3异质结构形成摩尔超晶格的示意图[137]; (b)—(e)[138]: (b)二维铁磁材料堆叠在具有磁各向异性的奈尔型反铁磁基底上的示意图; (c)单层二维铁磁性材料(灰色)和层状反铁磁基底(绿色)间由于晶格错配或扭转形成的摩尔超晶格; (d)层间磁耦合强度随摩尔超晶格周期的变化; (e)斯格明子形成的示意图; (f)—(h)范德瓦尔斯作用力拾取的转移法制备的WTe2/Fe3GeTe2异质结构[139]: (f)异质结构的光学图片; (g)霍尔电阻随着磁场的变化情况, 在发生磁化翻转的地方出现尖峰, 表明存在拓扑霍尔效应; (h)样品在180 K和外加510 Oe的磁场下, WTe2/40L Fe3GeTe2的样品在不同偏转角度下利用洛伦兹透射电镜观测到的斯格明子

    Fig. 15.  Moiré superlattice and topological magnetic structure in two-dimensional magnetic materials. (a) Schematic diagram of the proposed Moiré pattern in CrI3/CrGeTe3 heterostructure[137]; (b)–(e)[138]: (b) an ferromagnetic (FM) monolayer on a layered antiferromagmetic (AFM) substrate with lateral Neél order and perpendicular anisotropy; (c) The moiré pattern between the FM monolayer (gray) and AFM substrate (green) arises from the lattice mismatch and/or twisting; (d) phase diagram as a function of moiré period A and the magnitude of interlayer magnetic coupling; (e) schematic diagram of the formation of skyrmion. (f)–(h) WTe2/Fe3GeTe2 heterostructure[139]: (f) optical image of WTe2/Fe3GeTe2 heterostructure; (g) magnetic field dependence of Hall resistivity, showing a peak and dip near the transition edge before the magnetization saturates, which is a sign of the topological Hall effect; (h) Lorentz transmission electron microscopy observation of skyrmion lattice from under focus to over focus on WTe2/40L Fe3GeTe2 samples at 180 K with a field of 510 Oe.

    Baidu
  • [1]

    Das S, Robinson J A, Dubey M, Terrones H, Terrones M (Clarke D R Ed.) 2015 Annu. Rev. Mater. Res. 45 1Google Scholar

    [2]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 Acs Nano 7 2898Google Scholar

    [3]

    Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S, Gao C 2019 Science 366 983Google Scholar

    [4]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [5]

    Huang Y, Pan Y H, Yang R, Bao L H et al. 2020 Nat. Commun. 11 2453Google Scholar

    [6]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [7]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [8]

    Gao Y, Yin Q, Wang Q, Li Z, Cai J, Zhao T, Lei H, Wang S, Zhang Y, Shen B 2020 Adv. Mater. 32 2005228Google Scholar

    [9]

    Jiang X, Liu Q, Xing J, Liu N, Guo Y, Liu Z, Zhao J 2021 Appl. Phys. Rev. 8 031305Google Scholar

    [10]

    Peng L, Yuan Y, Li G, Yang X, Xian J J, Yi C J, Shi Y G, Fu Y S 2017 Nat. Commun. 8 659Google Scholar

    [11]

    何 聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国 2021 70 127501Google Scholar

    He C L, Xu H J, Tang J, Wang X, Wei J W, Shen S P, Chen Q Q, Shao Q M, Yu G Q, Zhang G Y, Wang S G 2021 Acta Phys. Sin. 70 127501Google Scholar

    [12]

    姚 文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻 2021 70 027901Google Scholar

    Yao W Q, Sun J Z, Chen J Y, Guo Y L, Wu B, Liu Y Q [ 2021 70 2021 Acta Phys. Sin. 70 027901Google Scholar

    [13]

    Chang C, Chen W, Chen Y, Chen Y H, et al. 2021 Acta Phys. -Chim. Sin. 37 2108017Google Scholar

    [14]

    Liu Y, Zhang S, He J, Wang Z M, Liu Z 2019 Nano-Micro Lett. 11 13Google Scholar

    [15]

    Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A et al. 2017 Nat. Nanotechnol. 12 223Google Scholar

    [16]

    Tsen A W, Hunt B, Kim Y D, Yuan Z J, Jia S, Cava R J, Hone J, Kim P, Dean C R, Pasupathy A N 2016 Nat. Phys. 12 208Google Scholar

    [17]

    Lee C-H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [18]

    Massicotte M, Schmidt P, Vialla F, Schaedler K G, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij K J, Koppens F H L 2016 Nat. Nanotechnol. 11 42Google Scholar

    [19]

    Fallahazad B, Movva H C P, Kim K, Larentis S, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2016 Phys. Rev. Lett. 116 086601Google Scholar

    [20]

    Wu Y, Zhang S, Zhang J, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C, Han X, Shao Q, Taniguchi T, Watanabe K, Zang J, Mao Z, Zhang X, Wang K L 2020 Nat. Commun. 11 3860Google Scholar

    [21]

    Liu Y, Guo J, Zhu E, Liao L, Lee S-J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696Google Scholar

    [22]

    Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar

    [23]

    王慧, 徐萌, 郑仁奎 2020 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [24]

    杨维, 韩江朝, 曹元, 林晓阳, 赵巍胜 2021 70 129101Google Scholar

    Yang W, Han J C, Cao Y, Lin X Y, Zhao W S 2021 Acta Phys. Sin. 70 129101Google Scholar

    [25]

    Zhou X, Hu X, Yu J, Liu S, Shu Z, Zhang Q, Li H, Ma Y, Xu H, Zhai T 2018 Adv. Funct. Mater. 28 1706587Google Scholar

    [26]

    Sanchez O L, Ovchinnikov D, Misra S, Allain A, Kis A 2016 Nano Lett. 16 5792Google Scholar

    [27]

    Chu Y, Liu L, Yuan Y, Shen C, Yang R, Shi D, Yang W, Zhang G 2020 Chinese Phys. B 29 128104Google Scholar

    [28]

    Wang X, Cui Y, Li T, Lei M, Li J, Wei Z 2019 Adv. Opt. Mater. 7 1801274Google Scholar

    [29]

    Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Song Y I, Hong B H, Ahn J H 2010 Nano Lett. 10 490Google Scholar

    [30]

    Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L, Ruoff R S 2009 Nano Lett. 9 4359Google Scholar

    [31]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [32]

    Shi J, Ma D, Han G F, Zhang Y, Ji Q, Gao T, Sun J, Song X, Li C, Zhang Y, Lang X Y, Zhang Y, Liu Z 2014 Acs Nano 8 10196Google Scholar

    [33]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30Google Scholar

    [34]

    Reina A, Son H, Jiao L, Fan B, Dresselhaus M S, Liu Z, Kong J 2008 J. Phys. Chem. C 112 17741Google Scholar

    [35]

    Schneider G F, Calado V E, Zandbergen H, Vandersypen L M K, Dekker C 2010 Nano Lett. 10 1912Google Scholar

    [36]

    Li H, Wu J, Huang X, Yin Z, Liu J, Zhang H 2014 Acs Nano 8 6563Google Scholar

    [37]

    Gurarslan A, Yu Y, Su L, Yu Y, Suarez F, Yao S, Zhu Y, Ozturk M, Zhang Y, Cao L 2014 Acs Nano 8 11522Google Scholar

    [38]

    Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017 Acs Nano 11 12001Google Scholar

    [39]

    Zhang Z, Ji X, Shi J, Zhou X, Zhang S, Hou Y, Qi Y, Fang Q, Ji Q, Zhang Y, Hong M, Yang P, Liu X, Zhang Q, Liao L, Jin C, Liu Z, Zhang Y 2017 Acs Nano 11 4328Google Scholar

    [40]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L-P, Zhang Z, Fu Q, Peng L M, Bao X, Cheng H M 2012 Nat. Commun. 3 699Google Scholar

    [41]

    Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P 2011 Acs Nano 5 9927Google Scholar

    [42]

    Yang X, Li X, Deng Y, Wang Y, Liu G, Wei C, Li H, Wu Z, Zheng Q, Chen Z, Jiang Q, Lu H, Zhu J 2019 Adv. Funct. Mater. 29 1902427Google Scholar

    [43]

    Jain A, Bharadwaj P, Heeg S, Parzefall M, Taniguchi T, Watanabe K, Novotny L 2018 Nanotechnology 29 265203Google Scholar

    [44]

    Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, van der Zant H S J, Steele G A 2014 2D Mater. 1 011002Google Scholar

    [45]

    Zomer P J, Guimarães M H D, Brant J C, Tombros N, Wees B J v 2014 Appl. Phys. Lett. 105 013101Google Scholar

    [46]

    Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C, Lombardo A 2018 Nat. Commun. 9 5387Google Scholar

    [47]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [48]

    Wang J I J, Yang Y, Chen Y A, Watanabe K, Taniguchi T, Churchill H O H, Jarillo-Herrero P 2015 Nano Lett. 15 1898Google Scholar

    [49]

    Zomer P J, Dash S P, Tombros N, van Wees B J 2011 Appl. Phys. Lett. 99 232104Google Scholar

    [50]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar

    [51]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [52]

    Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G, Rogers J A 2006 Nat. Mater. 5 33Google Scholar

    [53]

    Pedrinazzi P, Caridad J M, Mackenzie D M A, Pizzocchero F, Gammelgaard L, Jessen B S, Sordan R, Booth T J, Boggild P 2018 Appl. Phys. Lett. 112 033101Google Scholar

    [54]

    Leon J A, Mamani N C, Rahim A, Gomez L E, Silva M A P d, Gusev G M 2014 Graphene 03 25Google Scholar

    [55]

    Fan S, Vu Q A, Tran M D, Adhikari S, Lee Y H 2020 2D Mater. 7 022005Google Scholar

    [56]

    Zhou W, Chen M, Guo M, Hong A, Yu T, Luo X, Yuan C, Lei W, Wang S 2020 Nano Lett. 20 2923Google Scholar

    [57]

    van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar

    [58]

    Ly T H, Perello D J, Zhao J, Deng Q, Kim H, Han G H, Chae S H, Jeong H Y, Lee Y H 2016 Nat. Commun. 7 10426Google Scholar

    [59]

    Yu Q, Lian J, Siriponglert S, Li H, Chen Y P, Pei S S 2008 Appl. Phys. Lett. 93 113103Google Scholar

    [60]

    Zhuang B, Li S, Li S, Yin J 2021 Carbon 173 609Google Scholar

    [61]

    Song Y, Zou W, Lu Q, Lin L, Liu Z 2021 Small 2007600Google Scholar

    [62]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nature Nanotechnology 5 722

    [63]

    Bertolazzi S, Brivio J, Kis A 2011 Acs Nano 5 9703Google Scholar

    [64]

    Kretinin A V, Cao Y, Tu J S, Yu G L, Jalil R, Novoselov K S, Haigh S J, Gholinia A, Mishchenko A, Lozada M, Georgiou T, Woods C R, Withers F, Blake P, Eda G, Wirsig A, Hucho C, Watanabe K, Taniguchi T, Geim A K, Gorbachev R V 2014 Nano Lett. 14 3270Google Scholar

    [65]

    Taychatanapat T, Watanabe K, Taniguchi T, Jarillo-Herrero P 2011 Nat. Phys. 7 621Google Scholar

    [66]

    Schneider G F, Calado V E, Zandbergen H, Vandersypen L M, Dekker C 2010 Nano Letters 10 1912

    [67]

    Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017 ACS Nano 11 12001

    [68]

    Georgiou T, Britnell L, Blake P, Gorbachev R V, Gholinia A, Geim A K, Casiraghi C, Novoselov K S 2011 Appl. Phys. Lett. 99 093103Google Scholar

    [69]

    Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K, Gorbachev R 2012 Nat. Mater. 11 764Google Scholar

    [70]

    Pan W, Xiao J, Zhu J, Yu C, Zhang G, Ni Z, Watanabe K, Taniguchi T, Shi Y, Wang X 2012 Sci. Rep. 2 893Google Scholar

    [71]

    Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G, Rogers J A 2005 Nat. Mater. 5 33

    [72]

    Uwanno T, Hattori Y, Taniguchi T, Watanabe K, Nagashio K 2015 2D Mater. 2 041002Google Scholar

    [73]

    Wang J I, Yang Y, Chen Y A, Watanabe K, Taniguchi T, Churchill H O, Jarillo-Herrero P 2015 Nano Letters 15 1898

    [74]

    Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C, Xu X 2017 Sci. Adv. 3 e1603113Google Scholar

    [75]

    Kinoshita K, Moriya R, Onodera M, Wakafuji Y, Masubuchi S, Watanabe K, Taniguchi T, Machida T 2019 Npj 2D Mater. Appl. 3 22Google Scholar

    [76]

    Pedrinazzi P, Caridad J M, Mackenzie D M A, Pizzocchero F, Gammelgaard L, Jessen B S, Sordan R, Booth T J, Bøggild P 2018 Appl. Phys. Lett. 112 033101

    [77]

    Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B, Stampfer C 2015 Sci. Adv. 1 e1500222Google Scholar

    [78]

    Banszerus L, Schmitz M, Engels S, Goldsche M, Watanabe K, Taniguchi T, Beschoten B, Stampfer C 2016 Nano Lett. 16 1387Google Scholar

    [79]

    De Fazio D, Purdie D G, Ott A K, Braeuninger-Weimer P, Khodkov T, Goossens S, Taniguchi T, Watanabe K, Livreri P, Koppens F H L, Hofmann S, Goykhman I, Ferrari A C, Lombardo A 2019 ACS Nano 13 8926Google Scholar

    [80]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar

    [81]

    Wakafuji Y, Moriya R, Masubuchi S, Watanabe K, Taniguchi T, Machida T 2020 Nano Lett. 20 2486Google Scholar

    [82]

    Uwanno T, Hattori Y, Taniguchi T, Watanabe K, Nagashio K 2015 2D Mater. 2 041002

    [83]

    Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K, Gorbachev R 2012 Nature Materials 11 764

    [84]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [85]

    Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C, Lombardo A 2018 Nature Commun. 9 5387

    [86]

    Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Boggild P, Booth T J 2016 Nat. Commun. 7 11894Google Scholar

    [87]

    Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C, Lombardo A 2018 Nature Communications 9 5387

    [88]

    Toyoda S, Uwanno T, Taniguchi T, Watanabe K, Nagashio K 2019 Appl. Phys. Express 12 055008Google Scholar

    [89]

    Iwasaki T, Endo K, Watanabe E, Tsuya D, Morita Y, Nakaharai S, Noguchi Y, Wakayama Y, Watanabe K, Taniguchi T, Moriyama S 2020 Acs Appl. Mater. Interfaces 12 8533Google Scholar

    [90]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [91]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H, Xu X 2018 Nat. Mater. 17 778Google Scholar

    [92]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [93]

    Burch K S, Mandrus D, Park J G 2018 Nature 563 47Google Scholar

    [94]

    Gong C, Zhang X 2019 Science 363 eaav4450

    [95]

    Bevin H, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Natures 546 270

    [96]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Natures 546 265

    [97]

    Zhang L, Huang X, Dai H, Wang M, Cheng H, Tong L, Li Z, Han X, Wang X, Ye L, Han J 2020 Adv. Mater. 32 e2002032Google Scholar

    [98]

    Tang C, Zhang Z, Lai S, Tan Q, Gao W B 2020 Adv. Mater. 32 e1908498Google Scholar

    [99]

    Rahman S, Liu B, Wang B, Tang Y, Lu Y 2021 ACS Appl. Mater. Interfaces 13 7423Google Scholar

    [100]

    Zhong D, Seyler K L, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, McGuire M A, Fu K C, Xiao D, Yao W, Xu X 2020 Nat. Nanotechnol. 15 187Google Scholar

    [101]

    Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K C, Xu X 2018 Nano Lett. 18 3823Google Scholar

    [102]

    Wu Y, Cui Q, Zhu M, Liu X, Wang Y, Zhang J, Zheng X, Shen J, Cui P, Yang H, Wang S 2021 ACS Appl. Mater. Interfaces 13 10656Google Scholar

    [103]

    Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar

    [104]

    Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G, Han X 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [105]

    Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [106]

    Ponomarenko L A, Geim A K, Zhukov A A, Jalil R, Morozov S V, Novoselov K S, Grigorieva I V, Hill E H, Cheianov V V, Fal’ko V I, Watanabe K, Taniguchi T, Gorbachev R V 2011 Nat. Phys. 7 958Google Scholar

    [107]

    Rivera P, Schaibley J R, Jones A M, Ross J S, Wu S, Aivazian G, Klement P, Seyler K, Clark G, Ghimire N J, Yan J, Mandrus D G, Yao W, Xu X 2015 Nat. Commun. 6 6242Google Scholar

    [108]

    Ceballos F, Bellus M Z, Chiu H-Y, Zhao H 2014 Acs Nano 8 12717Google Scholar

    [109]

    Kim J, Jin C, Chen B, Cai H, Zhao T, Lee P, Kahn S, Watanabe K, Taniguchi T, Tongay S, Crommie M F, Wang F 2017 Sci. Adv. 3 e1700518Google Scholar

    [110]

    Jin C, Kim J, Utama M I B, Regan E C, Kleemann H, Cai H, Shen Y, Shinner M J, Sengupta A, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2018 Science 360 893Google Scholar

    [111]

    Kozawa D, Carvalho A, Verzhbitskiy I, Giustiniano F, Miyauchi Y, Mouri S, Castro Neto A H, Matsuda K, Eda G 2016 Nano Lett. 16 4087Google Scholar

    [112]

    Dai H, Cheng H, Cai M, Hao Q, Xing Y, Chen H, Chen X, Wang X, Han J B 2021 ACS Appl. Mater. Interfaces 13 24314Google Scholar

    [113]

    Piquemal-Banci M, Galceran R, Martin M B, Godel F, Anane A, Petroff F, Dlubak B, Seneor P 2017 J. Phys. D Appl. Phys. 50 203002Google Scholar

    [114]

    Zhang L, Zhou J, Li H, Shen L, Feng Y P 2021 Appl. Phys. Rev. 8 021308Google Scholar

    [115]

    De Teresa J M, Barthelemy, Fert, Contour, Montaigne, Seneor 1999 Science 286 507Google Scholar

    [116]

    Velev J P, Dowben P A, Tsymbal E Y, Jenkins S J, Caruso A N 2008 Surf. Sci. Rep. 63 400Google Scholar

    [117]

    Dayen J F, Ray S J, Karis O, Vera-Marun I J, Kamalakar M V 2020 Appl. Phys. Rev. 7 011303Google Scholar

    [118]

    Ahn E C 2020 NPJ 2D Mater. Appl. 4 17Google Scholar

    [119]

    Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X 2018 Science 360 1214Google Scholar

    [120]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Natures 563 94

    [121]

    Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218Google Scholar

    [122]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [123]

    Yamaguchi T, Inoue Y, Masubuchi S, Morikawa S, Onuki M, Watanabe K, Taniguchi T, Moriya R, Machida T 2013 Appl. Phys. Express 6 073001Google Scholar

    [124]

    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo A F 2018 Nano Lett. 18 4303Google Scholar

    [125]

    Zhang L, Li T, Li J, Jiang Y, Yuan J, Li H 2020 J. Phys. Chem. C 124 27429Google Scholar

    [126]

    Albarakati S, Tan C, Chen Z J, Partridge J G, Zheng G, Farrar L, Mayes E L H, Field M R, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton A R, Tretiakov O A, Culcer D, Zhao Y J, Wang L 2019 Sci. Adv. 5 eaaw0409Google Scholar

    [127]

    Zhou H, Zhang Y, Zhao W 2021 Acs Appl. Mater. Interfaces 13 1214Google Scholar

    [128]

    Xiao Y, Liu J, Fu L 2020 Matter 3 1142Google Scholar

    [129]

    Abbas G, Li Y, Wang H, Zhang W X, Wang C, Zhang H 2020 Adv. Funct. Mater. 30 2000878Google Scholar

    [130]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [131]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [132]

    Brihuega I, Mallet P, González-Herrero H, Trambly de Laissardière G, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F, Veuillen J Y 2012 Phys. Rev. Lett. 109 196802Google Scholar

    [133]

    Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K, Andrei E Y 2011 Phys. Rev. Lett. 106 126802Google Scholar

    [134]

    Jin C, Regan E C, Yan A, Utama M I B, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [135]

    Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520Google Scholar

    [136]

    董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国 2018 67 137507Google Scholar

    Dong B W, Zhang J Y, Peng L C, He M, Zhang Y, Zhao Y C, Wang C, Sun Y, Cai J W, Wang W H, Wei H X, Shen B G, Jiang Y, Wang S G 2018 Acta Phys. Sin. 67 137507Google Scholar

    [137]

    Shang J, Tang X, Tan X, Du A, Liao T, Smith S C, Gu Y, Li C, Kou L 2019 ACS Appl. Nano Mater. 3 1282

    [138]

    Tong Q, Liu F, Xiao J, Yao W 2018 Nano Lett. 18 7194Google Scholar

    [139]

    Wu Y, Zhang S, Zhang J, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C, Han X, Shao Q, Taniguchi T, Watanabe K, Zang J, Mao Z, Zhang X, Wang K L 2020 Nature Communications 11 3860

    [140]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [141]

    Kha T, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件.  , 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展.  , 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [3] 宋蕊, 王必利, 冯凯, 王黎, 梁丹丹. 二维VOBr2单层的结构畸变及其磁性和铁电性.  , 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [4] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质.  , 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [5] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展.  , 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [6] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选.  , 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [7] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制.  , 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [8] 宋蕊. 二维VOBr2单层的结构畸变及其磁性和铁电性研究.  , 2021, (): . doi: 10.7498/aps.70.20211516
    [9] 孟雨欣, 赵漪凡, 李绍春. 褶皱状蜂窝结构的单层二维材料研究进展.  , 2021, 70(14): 148101. doi: 10.7498/aps.70.20210638
    [10] 何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国. 基于二维材料的自旋-轨道矩研究进展.  , 2021, 70(12): 127501. doi: 10.7498/aps.70.20210004
    [11] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性.  , 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [12] 王浩林, 宗其军, 黄焱, 陈以威, 朱雨剑, 魏凌楠, 王雷. 二维原子晶体的转移堆叠方法及其高质量电子器件的研究进展.  , 2021, 70(13): 138202. doi: 10.7498/aps.70.20210929
    [13] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法.  , 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [14] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展.  , 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [15] 郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞. 异质结构在光伏型卤化物钙钛矿光电转换器件中的应用.  , 2020, 69(16): 167804. doi: 10.7498/aps.69.20200591
    [16] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器.  , 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [17] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展.  , 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [18] 徐依全, 王聪. 基于二维材料的全光器件.  , 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [19] 段嘉华, 陈佳宁. 二维极化激元学近场研究进展.  , 2019, 68(11): 110701. doi: 10.7498/aps.68.20190341
    [20] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用.  , 2018, 67(21): 218201. doi: 10.7498/aps.67.20181636
计量
  • 文章访问数:  17850
  • PDF下载量:  1070
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2021-12-01
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-02-20

/

返回文章
返回
Baidu
map