Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of neutron irradiation on optical characteristics of Yb-doped fiber materials

Li Fen-Fei Zhou Xiao-Yan Zhang Kui-Bao Shi Zhao-Hua Chen Jin-Zhan Ye Xin Wu Wei-Dong Li Bo

Citation:

Effects of neutron irradiation on optical characteristics of Yb-doped fiber materials

Li Fen-Fei, Zhou Xiao-Yan, Zhang Kui-Bao, Shi Zhao-Hua, Chen Jin-Zhan, Ye Xin, Wu Wei-Dong, Li Bo
PDF
HTML
Get Citation
  • Yb-doped fiber laser is a very appealing technology to implement space communication, laser radar and nuclear facilities due to its reduced weight, size, high efficiency, high peak power combined with good beam quality. However, Yb-doped fiber materials will suffer a harsh ionizing radiation (such as neutron, proton and electron) under the condition of irradiation. The radiation-induced darkening effect can lead the fiber loss to increase obviously, the laser slope efficiency to decrease drastically, and even no laser output to be observed in severe cases. Therefore, it is necessary to conduct in-depth research on the performance changes of Yb-doped fiber materials subjected to the irradiation. In this paper, a series of Yb-doped optical fibers and optical fibers is prepared by the improved chemical vapor deposition method combined with rare-earth chelate-doped. And the optical properties of the optical fiber before and after being irradiated and annealed are tested. We mainly investigate the absorption spectrum of Yb-doped fiber material. The results show that the concentration of Al-related defects in the Yb-doped fiber material increases after neutron irradiation, and the absorption loss in the visible region increases. And the color center defects produced by the irradiation will significantly reduce the Yb ion fluorescence lifetime. The doping of Ce ions can reduce the Al-oxygen hole center (Al-OHC) color center defects, and can suppresse the radiation-induced darkening effect of Yb-doped fiber to a certain extent. Thermal annealing can reduce the absorption of fiber material by reducing the concentration of neutron radiation-induced color center defects, and thus eliminating the darkening effect to a certain extent. Finally, with our previous research, we find that neutron irradiation and ray irradiation have similar effects on the optical properties of Yb-doped fiber materials. The main reason is that the electron ionization effects occur due to both ray irradiation and neutron irradiation to generate free electron and hole pairs, which then combine with the original defects in the material to turn into color center defects. However, the color center defects caused by neutron irradiation are more stable and require thermal annealing to be eliminated. And the results obtained in this study provide theoretical basis and solution for developing the Yb-doped fibers with high laser performance and high radiation resistance.
      Corresponding author: Zhou Xiao-Yan, zhouxy@caep.cn ; Zhang Kui-Bao, zhangkuibao@swust.edu.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1830203) and the National Natural Science Foundation of China (Grant No. 51672228)
    [1]

    Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Electron. 33 1049Google Scholar

    [2]

    Lu K, Dutta N K 2002 J. Appl. Phys. 91 576Google Scholar

    [3]

    Yan P, Wang X J, Li D, Huang Y S, Sun J Y, Xiao Q R, Gong M L 2017 Opt. Lett. 42 1193Google Scholar

    [4]

    黄宏琪, 赵楠, 陈瑰, 胡姝玲, 廖雷, 刘自军, 彭景刚, 戴能利 2014 63 200201Google Scholar

    Huang H Q, Zhao N, Chen G, Liao L, Liu Z J, Peng J G, Dai N L 2014 Acta Phys. Sin. 63 200201Google Scholar

    [5]

    Lezius M, Predehl K, Stower W, Turler A, Greiter M, Hoeschen C, Thirolf P, Assmann W, Habs D, Prokofiev A, Ekstrom C, Hansch T W, Holzwarth R 2012 IEEE Trans. Nucl. Sci. 59 425Google Scholar

    [6]

    Girard S, Vivona M, Laurent A, Cadier B, Marcandella C, Robin T, Pinsard E, Boukenter A, Ouerdane Y 2012 Opt. Express 20 8457Google Scholar

    [7]

    Girard S, Ouerdane Y, Origlio G, Marcandella C, Boukenter A, Richard N, Baggio J, Paillet P, Cannas M, Bisutti J, Meunier J P, Boscaino R 2008 IEEE Trans. Nucl. Sci. 55 3473Google Scholar

    [8]

    Fox B P, Simmons-Potter K, Simmons J H, Thomes Jr W J, Bambha R P, Kliner D A V 2008 Proc. SPIE Fiber Lasers V:Technol. Syst. Appl. 6873 68731F

    [9]

    宋镜明, 郭建华, 王学勤, 胡姝玲 2012 激光与光电子学进展 49 58

    Song J M, Guo J H, Wang X Q, Hu Z L 2012 Laser Optoelectron. Prog. 49 58

    [10]

    Jetschke S, Unger S, Schwuchow A, Leich M, Kirchhof J 2008 Opt. Express 16 15540Google Scholar

    [11]

    Deschamps T, Ollier N, Vezin H, Gonnet C 2012 J. Chem. Phys. 136 014503Google Scholar

    [12]

    Jetschke S, Unger S, Schwuchow A, Leich M, Jager M 2016 Opt. Express 24 13009Google Scholar

    [13]

    Arai K, Namikawa H, Kumata K, Honda T 1986 J. Appl. Phys. 59 3430Google Scholar

    [14]

    李奋飞, 周晓燕, 张魁宝, 陈进湛, 高聪, 张立华, 石兆华, 夏汉定, 叶鑫, 吴卫东, 李波 2020 强激光与粒子束 32 081003

    Li F F, Zhou X Y, Zhang K B, Chen J Z, Gao C, Zhang L H, Shi Z H, Xia H D, Ye X, Wu W D, Li B 2020 High Power Laser Part. Beams 32 081003

    [15]

    Wang F, Shao C Y, Yu C L, Wang S K, Zhang L, Gao G J, Hu L L 2019 J. Appl. Phys. 125 173104Google Scholar

    [16]

    Origlio G, Messina F, Girard S, Cannas M, Boukenter A, Ouerdane Y 2010 J. Appl. Phys. 108 123103Google Scholar

    [17]

    Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L, Hu L L 2018 J. Phys. Chem. B 122 2809

    [18]

    Engholm M, Jelger P, Laurell F, Norin L 2009 Opt. Lett. 34 1285Google Scholar

    [19]

    Montiel i Ponsoda J J, Söderlund M J, Koplow J P, Koponen J J, Honkanen S 2010 Appl. Opt. 49 4139Google Scholar

    [20]

    Zhao N, Xing Y B, Li J M, Liao L, Wang Y B, Peng J G, Yang L Y, Dai N L, Li H Q, Li J Y 2015 Opt. Express 23 25272Google Scholar

    [21]

    Peng K, Wang Z, Zhan H, Ni L, Gao C, Wang, X L, Wang Y Y, Wang J J, Jing F, Lin A X 2016 Electron. Lett. 52 1942Google Scholar

    [22]

    Liu S, Zhan H, Peng K, Sun S H, Li Y W, Jiang J L, Ni L, Wang X L, Yu J, Zhu R H, Wang J J, Jing F, Lin A X 2018 Opt. Fiber Technol. 46 297Google Scholar

    [23]

    Feng W, She S F, Wang P F, Liu Y S, Chang C, Hou C Q, Li W N 2020 J. Non-Cryst. Solids 528 119540Google Scholar

    [24]

    Mady F, Guttilla F, Benabdesselam M, Blanc F 2019 Opt. Mater. Express 9 2466Google Scholar

    [25]

    Deschamps T, Vezin H, Gonnet C, Ollier N 2013 Opt. Express 21 8382Google Scholar

    [26]

    Shao C Y, Xu W B, Ollier N, Guzik M, Boulon G, Yu L, Zhang L, Yu C L, Wang S K, Hu L L 2016 J. Appl. Phys. 120 153101Google Scholar

    [27]

    Chen X D, Heng X B, Tang G W, Zhu T T, Sun M, Shan X J, Wen X, Guo J Y, Qian Q, Yang Z M 2016 Opt. Express 24 9149Google Scholar

    [28]

    Mady F, Duchez J B, Mebrouk Y, Benabdesselam M 2014 AIP Conf. Proc. 1624 87Google Scholar

    [29]

    Arai T, Ichii K, Tanigawa S, Fujimaki M 2011 Proc. SPIE Fiber Lasers V: Technol. Syst. Appl. 7914 79140k

    [30]

    Stroud J S 1965 J. Chem. Phys. 43 2442Google Scholar

    [31]

    Söderlund M J, Montiel i Ponsoda J J, Koplow J P, Honkanen S 2009 Opt. Express 17 9940Google Scholar

  • 图 1  光纤吸收谱测试系统

    Figure 1.  The absorption spectra of optical fibers measurement configuration.

    图 2  辐照前后 (a)掺镱光纤预制棒S1吸收光谱和(b)掺镱光纤预制棒S2吸收光谱, 图(b)中的插图给出了980 nm附近的放大图

    Figure 2.  Absorption spectra of (a) optical fiber preform S1 and (b) optical fiber preform S2 before and after irradiation, the insets of panel (b) show the enlarged views near 980 nm.

    图 3  S1光纤预制棒辐照后实验数据及高斯拟合

    Figure 3.  Experimental date and decomposition with Gaussian of S1 optical fiber preform after irradiation.

    图 4  S2光纤预制棒辐照后实验数据及高斯拟合

    Figure 4.  Experimental date and decomposition with Gaussian of S2 optical fiber preform after irradiation.

    图 5  辐致色心缺陷转变模型

    Figure 5.  Model of radiation darkening color center defects transfer.

    图 6  中子辐照前后光纤的吸收谱

    Figure 6.  Absorption spectrum of optical fibers before and after neutron irradiation.

    图 7  中子辐照前后及热退火后(a)掺镱光纤预制棒S1吸收光谱和(b)掺镱光纤预制棒S2吸收光谱

    Figure 7.  Absorption spectra of (a) optical fiber preform S1 and (b) optical fiber preform S2 before and after irradiation and after annealing.

    表 1  光纤及预制棒的EPMA元素分析

    Table 1.  Electron probe microanalysis (EPMA) of optical fibers and optical fiber preforms.

    No.Doping concentration/mol%
    YbAlCe
    1#0.060.510
    2#0.050.530.02
    S10.130.780
    S20.111.560.02
    DownLoad: CSV

    表 2  辐照前后及热退火后Yb3+的荧光寿命

    Table 2.  Fluorescence lifetime of Yb3+ before and after irradiation and after annealing.

    No.t/ms
    τ1τ2τ3
    S10.9480.7490.929
    S20.9390.7470.907
    DownLoad: CSV
    Baidu
  • [1]

    Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Electron. 33 1049Google Scholar

    [2]

    Lu K, Dutta N K 2002 J. Appl. Phys. 91 576Google Scholar

    [3]

    Yan P, Wang X J, Li D, Huang Y S, Sun J Y, Xiao Q R, Gong M L 2017 Opt. Lett. 42 1193Google Scholar

    [4]

    黄宏琪, 赵楠, 陈瑰, 胡姝玲, 廖雷, 刘自军, 彭景刚, 戴能利 2014 63 200201Google Scholar

    Huang H Q, Zhao N, Chen G, Liao L, Liu Z J, Peng J G, Dai N L 2014 Acta Phys. Sin. 63 200201Google Scholar

    [5]

    Lezius M, Predehl K, Stower W, Turler A, Greiter M, Hoeschen C, Thirolf P, Assmann W, Habs D, Prokofiev A, Ekstrom C, Hansch T W, Holzwarth R 2012 IEEE Trans. Nucl. Sci. 59 425Google Scholar

    [6]

    Girard S, Vivona M, Laurent A, Cadier B, Marcandella C, Robin T, Pinsard E, Boukenter A, Ouerdane Y 2012 Opt. Express 20 8457Google Scholar

    [7]

    Girard S, Ouerdane Y, Origlio G, Marcandella C, Boukenter A, Richard N, Baggio J, Paillet P, Cannas M, Bisutti J, Meunier J P, Boscaino R 2008 IEEE Trans. Nucl. Sci. 55 3473Google Scholar

    [8]

    Fox B P, Simmons-Potter K, Simmons J H, Thomes Jr W J, Bambha R P, Kliner D A V 2008 Proc. SPIE Fiber Lasers V:Technol. Syst. Appl. 6873 68731F

    [9]

    宋镜明, 郭建华, 王学勤, 胡姝玲 2012 激光与光电子学进展 49 58

    Song J M, Guo J H, Wang X Q, Hu Z L 2012 Laser Optoelectron. Prog. 49 58

    [10]

    Jetschke S, Unger S, Schwuchow A, Leich M, Kirchhof J 2008 Opt. Express 16 15540Google Scholar

    [11]

    Deschamps T, Ollier N, Vezin H, Gonnet C 2012 J. Chem. Phys. 136 014503Google Scholar

    [12]

    Jetschke S, Unger S, Schwuchow A, Leich M, Jager M 2016 Opt. Express 24 13009Google Scholar

    [13]

    Arai K, Namikawa H, Kumata K, Honda T 1986 J. Appl. Phys. 59 3430Google Scholar

    [14]

    李奋飞, 周晓燕, 张魁宝, 陈进湛, 高聪, 张立华, 石兆华, 夏汉定, 叶鑫, 吴卫东, 李波 2020 强激光与粒子束 32 081003

    Li F F, Zhou X Y, Zhang K B, Chen J Z, Gao C, Zhang L H, Shi Z H, Xia H D, Ye X, Wu W D, Li B 2020 High Power Laser Part. Beams 32 081003

    [15]

    Wang F, Shao C Y, Yu C L, Wang S K, Zhang L, Gao G J, Hu L L 2019 J. Appl. Phys. 125 173104Google Scholar

    [16]

    Origlio G, Messina F, Girard S, Cannas M, Boukenter A, Ouerdane Y 2010 J. Appl. Phys. 108 123103Google Scholar

    [17]

    Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L, Hu L L 2018 J. Phys. Chem. B 122 2809

    [18]

    Engholm M, Jelger P, Laurell F, Norin L 2009 Opt. Lett. 34 1285Google Scholar

    [19]

    Montiel i Ponsoda J J, Söderlund M J, Koplow J P, Koponen J J, Honkanen S 2010 Appl. Opt. 49 4139Google Scholar

    [20]

    Zhao N, Xing Y B, Li J M, Liao L, Wang Y B, Peng J G, Yang L Y, Dai N L, Li H Q, Li J Y 2015 Opt. Express 23 25272Google Scholar

    [21]

    Peng K, Wang Z, Zhan H, Ni L, Gao C, Wang, X L, Wang Y Y, Wang J J, Jing F, Lin A X 2016 Electron. Lett. 52 1942Google Scholar

    [22]

    Liu S, Zhan H, Peng K, Sun S H, Li Y W, Jiang J L, Ni L, Wang X L, Yu J, Zhu R H, Wang J J, Jing F, Lin A X 2018 Opt. Fiber Technol. 46 297Google Scholar

    [23]

    Feng W, She S F, Wang P F, Liu Y S, Chang C, Hou C Q, Li W N 2020 J. Non-Cryst. Solids 528 119540Google Scholar

    [24]

    Mady F, Guttilla F, Benabdesselam M, Blanc F 2019 Opt. Mater. Express 9 2466Google Scholar

    [25]

    Deschamps T, Vezin H, Gonnet C, Ollier N 2013 Opt. Express 21 8382Google Scholar

    [26]

    Shao C Y, Xu W B, Ollier N, Guzik M, Boulon G, Yu L, Zhang L, Yu C L, Wang S K, Hu L L 2016 J. Appl. Phys. 120 153101Google Scholar

    [27]

    Chen X D, Heng X B, Tang G W, Zhu T T, Sun M, Shan X J, Wen X, Guo J Y, Qian Q, Yang Z M 2016 Opt. Express 24 9149Google Scholar

    [28]

    Mady F, Duchez J B, Mebrouk Y, Benabdesselam M 2014 AIP Conf. Proc. 1624 87Google Scholar

    [29]

    Arai T, Ichii K, Tanigawa S, Fujimaki M 2011 Proc. SPIE Fiber Lasers V: Technol. Syst. Appl. 7914 79140k

    [30]

    Stroud J S 1965 J. Chem. Phys. 43 2442Google Scholar

    [31]

    Söderlund M J, Montiel i Ponsoda J J, Koplow J P, Honkanen S 2009 Opt. Express 17 9940Google Scholar

  • [1] Cheng Da-Zhao, Liu Cai-Yan, Zhang Chao-Ran, Qu Jia-Hui, Zhang Jing. Phase field simulation of intra/intergranular pore morphology evolution in neutron-irradiated austenitic stainless steel. Acta Physica Sinica, 2024, 73(22): 224601. doi: 10.7498/aps.73.20241353
    [2] Li Shi-Xiong, Chen De-Liang, Zhang Zheng-Ping, Long Zheng-Wen. Ground state structures and properties of Be atom doped boron clusters BeB$ _{ n}^{\bf 0/-} $($ n \bf = 10$–15). Acta Physica Sinica, 2020, 69(19): 193101. doi: 10.7498/aps.69.20200756
    [3] Chen Yi-Sha, Liao Lei, Li Jin-Yan. Experimental study on influence of fiber numerical aperture on mode instability threshold of ytterbium fiber oscillator. Acta Physica Sinica, 2019, 68(11): 114206. doi: 10.7498/aps.68.20182257
    [4] Zhang Shi-Yu, Yu Zhi-Nong, Cheng Jin, Wu De-Long, Li Xu-Yang, Xue Wei. Effects of annealing temperature and Ga content on properties of solution-processed InGaZnO thin film. Acta Physica Sinica, 2016, 65(12): 128502. doi: 10.7498/aps.65.128502
    [5] Tan Zai-Shang, Wu Xiao-Meng, Fan Zhong-Yong, Ding Shi-Jin. Effect of thermal annealing on the structure and properties of plasma enhanced chemical vapor deposited SiCOH film. Acta Physica Sinica, 2015, 64(10): 107701. doi: 10.7498/aps.64.107701
    [6] Wang Yu-Bao, Qi Xiao-Hui, Shen Yang, Yao Yi-Lei, Xu Zhi-Jing, Pan Yu-Zhai. Ultra-long cavity multi-wavelength Yb-doped fiber laser mode-locked by carbon nanotubes. Acta Physica Sinica, 2015, 64(20): 204205. doi: 10.7498/aps.64.204205
    [7] Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang. Molecular dynamics study of cascade damage at SiC/C interface. Acta Physica Sinica, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [8] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [9] Wang You-Fa, Wu Zhou-Li, Li Wen-Run, Wang Shuai, Tong Hong-Shuang, Ruan Yong-Feng. Spectroscopic properties of cerium doped YVO4 crystals and analysis on valence state of cerium ion. Acta Physica Sinica, 2012, 61(22): 228105. doi: 10.7498/aps.61.228105
    [10] Sheng Yu-Bang, Yang Lü-Yun, Luan Huai-Xun, Liu Zi-Jun, Li Jin-Yan, Dai Neng-Li. Gamma radiation effects on absorption and emission properties of erbium-doped silicate glasses. Acta Physica Sinica, 2012, 61(11): 116301. doi: 10.7498/aps.61.116301
    [11] Zhang Dong, Lu Xi-Rui, Yang Yan-Kai, Cui Chun-Long, Chen Meng-Jun. Capability of resisting γ-ray irradiation and Rietveld structurerefinement of zircon. Acta Physica Sinica, 2011, 60(7): 078901. doi: 10.7498/aps.60.078901
    [12] Xiao Zhi-Qiang, Li Lei-Lei, Zhang Bo, Xu Jing, Chen Zheng-Cai. Total dose characteristics of single poly EEPROM and SONOS EEPROM on SOI. Acta Physica Sinica, 2011, 60(2): 028502. doi: 10.7498/aps.60.028502
    [13] Yu Zong-Guang, Xiao Zhi-Qiang, Zhou Xin-Jie, Li Lei-Lei. Threshold voltage degradation mechanism of SOI SONOS EEPROM under total-dose irradiation. Acta Physica Sinica, 2011, 60(9): 098502. doi: 10.7498/aps.60.098502
    [14] Yu Jun, Zhou Peng, Zhao Heng-Yu, Wu Feng, Xia Hai-Ping, Su Liang-Bi, Xu Jun. Study on near-infrared broadband emission spectroscopic properties of Bi-doped α-BaB2O4 single crystal induced by γ-irradiation. Acta Physica Sinica, 2010, 59(5): 3538-3541. doi: 10.7498/aps.59.3538
    [15] Shen Zi-Cai, Kong Wei-Jin, Feng Wei-Quan, Ding Yi-Gang, Liu Yu-Ming, Zheng Hui-Qi, Zhao Xue, Zhao Chun-Qing. Degradation model of the optical properties of the thermal control coatings. Acta Physica Sinica, 2009, 58(2): 860-864. doi: 10.7498/aps.58.860
    [16] Peng Shao-Quan, Du Lei, Zhuang Yi-Qi, Bao Jun-Lin, He Liang, Chen Wei-Hua. Radiation degradation model of metal-oxide-semiconductor field effect transistor based on pre-irradiation 1/f noise. Acta Physica Sinica, 2008, 57(8): 5205-5211. doi: 10.7498/aps.57.5205
    [17] Yang Zhi-Hu, Zhang Xiao-An, Zhao Yong-Tao, Yin Wei-Wei, Li Ning-Xi. Precision measurement of excited spectra of oxygen ions. Acta Physica Sinica, 2006, 55(9): 4520-4527. doi: 10.7498/aps.55.4520
    [18] He Shou-Jie, Chen Qi-Dai, Li Xue-Chen, Ai Xi-Cheng, Zhang Jian-Ping, Wang Long. The light pulses and the spectra of conical bubbles sonoluminescence. Acta Physica Sinica, 2005, 54(2): 977-981. doi: 10.7498/aps.54.977
    [19] Zhang Ke-Yan. Phase transition speed research of metal material at laser irradiation medium strength. Acta Physica Sinica, 2004, 53(6): 1815-1819. doi: 10.7498/aps.53.1815
    [20] . Acta Physica Sinica, 2002, 51(2): 439-443. doi: 10.7498/aps.51.439
Metrics
  • Abstract views:  4773
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  13 January 2021
  • Accepted Date:  16 May 2021
  • Available Online:  07 June 2021
  • Published Online:  05 October 2021

/

返回文章
返回
Baidu
map