-
In this study, we use first-principles calculations to investigate the geometry, the electronic and the magnetic structure as well as to propose the laser-induced ultrafast spin dynamics on the tubular FeB20 and Fe2B20 clusters. Our results show that the FeB20 is a stable configuration when its Fe atom gets preferably adsorbed inside the B20 tube, while the Fe2B20 is more stable configuration when one of its two Fe atoms is located inside and the other outside the boron tube. In the latter cluster, due to the higher number of d states introduced by the additional magnetic atom, the density-of-states in the low-energy region becomes higher, thus leading to richer spin dynamics. The different local geometries of the two Fe atoms lead to a multitude of many-body states with high degree of spin-density localization. Based on the calculated ground state and excited states and by using suitably tailored laser pulses we achieve ultrafast spin-flip and spin crossover scenarios for both structures. Besides, the spin-flips reach a high fidelity (above 89.7%) and are reversible, while the crossovers have lower fidelity (below 78%) and are irreversible. We also propose an ultrafast spin-transfer process from Fe2 to Fe1 for Fe2B20. The present investigation, in which we predict various ultrafast spin dynamic taken by magnetic atoms absorbed inside and outside of tubular boron clusters, is expected to provide significant theoretical guidance for the future experimental implementation and the potential applications of the relevant spin logic functional devices.
[1] Bogani L, Wernsdorfer W 2008 Nat. Mater. 7 179
Google Scholar
[2] Khajetoorians A A, Heinrich A J 2016 Science 352 296
Google Scholar
[3] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488
Google Scholar
[4] Prinz G A 1998 Science 282 1660
Google Scholar
[5] Bader S D, Parkin S S P 2010 Annu. Rev. Condens. Matter Phys. 1 71
Google Scholar
[6] Dietl T 2005 J. Magn. Magn. Mater. 290-291 14
Google Scholar
[7] Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F 1988 Phys. Rev. Lett. 61 2472
Google Scholar
[8] Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250
Google Scholar
[9] Scholl A, Baumgarten L, Jacquemin R, Eberhardt W 1997 Phys. Rev. Lett. 79 5146
Google Scholar
[10] Pfau B, Schaffert S, Müller L, Gutt C, Al-shemmary. A, Büttner F, Delaunay R, Düsterer S, Flewett S, Frömter R, Geilhufe J, Guehrs E, Günther C M, Hawaldar R, Hille M, Jaouen N, Kobs A, Li K, Mohanty J, Redlin H, Schlotter W F, Stickler D, Treusch R, Vodungbo B, Kläui M, Oepen H P, Lüning J, Grübel G, Eisebitt S 2012 Nat. Commun. 3 1100
Google Scholar
[11] Koopmans B, Ruigrok J J M, Longa F D, de Jonge W J M 2005 Phys. Rev. Lett. 95 267207
Google Scholar
[12] Steiauf D, Fähnle M 2009 Phys. Rev. B 79 140401
Google Scholar
[13] Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203
Google Scholar
[14] Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515
Google Scholar
[15] Gómez-Abal R, Hübner W 2002 Phys. Rev. B 65 195114
Google Scholar
[16] Zhang Z Z, Cui B, Wang G Z, Ma B, Jin Q Y, Liu Y W 2010 Appl. Phys. Lett. 97 172508
Google Scholar
[17] Zhang W, Liu Q, Yuan Z, Xia K, He W, Zhan Q F, Zhang X Q, Cheng Z H 2019 Phys. Rev. B 100 104412
Google Scholar
[18] Lefkidis G, Reyes S A 2016 Phys. Rev. B 94 144433
Google Scholar
[19] 李春, 杨帆, Lefkidis G, Hübner W 2011 60 017802
Google Scholar
Li C, Yang F, Lefkidis G, Hübner W 2011 Acta Phys. Sin. 60 017802
Google Scholar
[20] Chaudhuri D, Xiang H P, Lefkidis G, Hübner W 2014 Phys. Rev. B 90 245113
Google Scholar
[21] Jin W, Li C, Lefkidis G, Hübner W 2014 Phys. Rev. B 89 024419
Google Scholar
[22] Chaudhuri D, Lefkidis G, Hübner W 2017 Phys. Rev. B 96 184413
Google Scholar
[23] Li C, Zhang S B, Jin W, Lefkidis G, Hübner W 2014 Phys. Rev. B 89 184404
Google Scholar
[24] Lefkidis G, Hübner W 2007 Phys. Rev. B 76 014418
Google Scholar
[25] Dong C D, Lefkidis G, Hübner W 2013 Phys. Rev. B 88 214421
Google Scholar
[26] Hübner W, Lefkidis G 2014 Phys. Rev. B 90 024401
Google Scholar
[27] Liu J, Li C, Jin W, Lefkidis G, Hübner W 2021 Phys. Rev. Lett. 126 037402
Google Scholar
[28] Li J H, Sun F, Du H L, Hong H L, Wang K H, Bian J 2019 Univ. Chem. Educ. 34 117
Google Scholar
[29] Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. U. S. A. 102 961
Google Scholar
[30] An W, Bulusu S, Gao Y, Zeng X C 2006 J. Chem. Phys. 124 154310
Google Scholar
[31] Marques M A L, Botti S 2005 J. Chem. Phys. 123 014310
Google Scholar
[32] Tian J F, Xu Z C, Shen C M, Liu F, Xu N S, Gao H J 2010 Nanoscale 2 1375
Google Scholar
[33] 刘立仁, 雷雪玲, 陈杭, 祝恒江 2009 58 5355
Google Scholar
Liu L R, Lei X L, Chen H, Zhu H J 2009 Acta Phys. Sin. 58 5355
Google Scholar
[34] Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M, Ahlrichs R 2007 Angew. Chem. Int. Edit. 46 8503
Google Scholar
[35] Li W L, Romanescu C, Jian T, Wang L S 2012 J. Am. Chem. Soc. 134 13228
Google Scholar
[36] Liu C S, Wang X F, Ye X J, Yan X H, Zeng Z 2014 J. Chem. Phys. 141 194306
Google Scholar
[37] Liang W Y, Das A, Dong X, Cui Z H 2018 Phys. Chem. Chem. Phys. 20 16202
Google Scholar
[38] Xu C, Cheng L J, Yang J L 2014 J. Chem. Phys. 141 124301
Google Scholar
[39] Tam N M, Pham H T, Duong L V, Pham-Ho, My P, Nguyen M T 2015 Phys. Chem. Chem. Phys. 17 3000
Google Scholar
[40] Ruan W, Xie A D, Wu D L, Luo W L, Yu X G 2014 Chin. Phys. B 23 033101
Google Scholar
[41] 阮文, 余晓光, 谢安东, 伍冬兰, 罗文浪 2014 63 243101
Google Scholar
Ruan W, Yu X G, Xie A D, Wu D L, Luo W L 2014 Acta Phys. Sin. 63 243101
Google Scholar
[42] 雷雪玲, 祝恒江, 葛桂贤, 王先明, 罗有华 2008 57 5491
Google Scholar
Lei X L, Zhu H J, Ge G X, Wang X M, Luo Y H 2008 Acta Phys. Sin. 57 5491
Google Scholar
[43] Popov I A, Jian T, Lopez G V, Boldyrev A I, Wang L S 2015 Nat. Commun. 6 8654
Google Scholar
[44] Penev E S, Bhowmick S, Sadrzadeh A, Yakobson B I 2012 Nano Lett. 12 2441
Google Scholar
[45] Li X Y, Li X X, Yang J L 2019 J. Phys. Chem. Lett. 10 4417
Google Scholar
[46] Liu J, Zhang Y M, Li C, Jin W, Lefkidis G, Hübner W 2020 Phys. Rev. B 102 024416
Google Scholar
[47] Hübner W, Kersten S, Lefkidis G 2009 Phys. Rev. B 79 184431
Google Scholar
[48] Li C, Jin W, Xiang H P, Lefkidis G, Hübner W 2011 Phys. Rev. B 84 054415
Google Scholar
[49] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian16 Revision B. 01 (Gaussian Inc., Wallingford, CT)
[50] Jin W, Rupp F, Chevalier K, Wolf M M N, Colindres Rojas M, Lefkidis G, Krüger H J, Diller R, Hübner W 2012 Phys. Rev. Lett. 109 267209
Google Scholar
[51] Nakatsuji H 1979 Chem. Phys. Lett. 67 329
Google Scholar
[52] Koseki S, Schmidt M W, Gordon M S 1998 J. Phys. Chem. A 102 10430
Google Scholar
[53] Lefkidis G, Hübner W 2005 Phys. Rev. Lett. 95 077401
Google Scholar
[54] Cash J R, Karp A H 1990 ACM Trans. Math. Softwave 16 201
Google Scholar
[55] Hartenstein T, Li C, Lefkidis G, Hübner W 2008 J. Phys. D: Appl. Phys. 41 164006
Google Scholar
[56] Du H, Liu J, Zhang N, Chang J, Jin W, Li C, Lefkidis G, Hübner W 2019 Phys. Rev. B 99 134430
Google Scholar
[57] Zhang N, Du H, Chang J, Jin W, Li C, Lefkidis G, Hübner W 2018 Phys. Rev. B 98 104431
Google Scholar
[58] Wang P P, Qiu M Y, Lu X, Jin W, Li C, Lefkidis G, Hübner W 2020 Phys. Rev. B 101 104414
Google Scholar
[59] Hogue R W, Singh S, Brooker S 2018 Chem. Soc. Rev. 47 7303
Google Scholar
[60] Rupp F, Chevalier K, Graf M, Schmitz M, Kelm H, Grün A, Zimmer M, Gerhards M, van Wüllen C, Krüger H J, Diller R 2017 Chem. Eur. J. 23 2119
Google Scholar
[61] Her J L, Matsuda Y H, Nakano M, Niwa Y, Inada Y 2012 J. Appl. Phys. 111 053921
Google Scholar
[62] Létard J F, Guionneau P, Goux-Capes L 2004 Towards Spin Crossover Applications, in Spin Crossover in Transition Metal Compounds III, Topics in Current Chemistry (Vol. 235) (Berlin, Heidelberg: Springer) pp221−249
[63] Bousseksou A, Molnár G, Salmon L, Nicolazzi W 2011 Chem. Soc. Rev. 40 3313
Google Scholar
-
图 2 FeB20与Fe2B20的SAC-CI能级, 黑色虚线表示单重态, 红色实线表示三重态. 其中, 各自旋动力学所涉及的有关初、末态在未考虑自旋轨道耦合时的能级位置被明确标出
Figure 2. The SAC-CI energy levels of clusters FeB20 and Fe2B20. The singlet and triplet terms are denoted by the black dashed and red solid lines, respectively. The related terms from which the involved initial and final states in the spin dynamics to be discussed later originate before the inclusion of SOC are marked.
图 3 超快自旋翻转动力学 (a) FeB20团簇的自旋翻转过程; (b) Fe2B20团簇的自旋翻转过程. 其中各动力学中初态、末态和中间态分别由黑色虚线、红色实线和点线表示
Figure 3. Ultrafast spin flip scenarios: (a) Spin-flip process in FeB20; (b) spin-flip process in Fe2B20. The initial, final, and intermediate states involved in each of the spin-flip processes are represented by the black dashed, red solid, and dotted lines, respectively.
图 5 超快自旋交叉动力学 (a) FeB20团簇的自旋交叉过程; (b) Fe2B20团簇的自旋交叉过程; 其中各动力学中初态、末态和中间态分别由黑色虚线、红色实线和点线表示
Figure 5. Ultrafast spin crossover scenarios: (a) Spin-crossover process in FeB20; (b) spin-crossover process in Fe2B20. The initial, final, and intermediate states involved in each of the spin-crossover processes are represented by black dashed, red solid, and dotted lines, respectively.
表 1 Fe2B20中具有单磁中心自旋局域能态的能量、自旋期望值及自旋密度
Table 1. Energies, spin expectation values, and spin density of the states with spin localized on one single magnetic atom for cluster Fe2B20.
Structure State Energy/eV $ \left\langle { {S}_{x} } \right\rangle $ $ \left\langle { {S}_{y} } \right\rangle $ $ \left\langle { {S}_{z} } \right\rangle $ Spin density Fe1 Fe2 B20 $ \left| {1} \right\rangle $ 0 0.38 –0.87 0 0.001 1.919 0.015 $ \left| {2} \right\rangle $ 0.001 –0.59 0.73 0 0.001 1.911 0.015 $ \left| {5} \right\rangle $ 0.513 0.21 –0.42 0 0.002 0.946 0.023 $ \left| {6} \right\rangle $ 0.515 –0.12 0.46 0 0.002 0.962 0.023 $ \left| {17} \right\rangle $ 1.797 0.16 –0.72 0 0.022 1.473 0.224 $ \left| {18} \right\rangle $ 1.797 –0.42 0.05 0 0.013 0.839 0.13 Fe2B20 $ \left| {19} \right\rangle $ 1.797 0.26 0.67 0 0.021 1.432 0.22 (B: θ = 90°, φ = 90°) $ \left| {25} \right\rangle $ 2.002 0.41 –0.35 0 0.004 1.099 0.120 $ \left| {26} \right\rangle $ 2.003 –0.23 0.54 0 0.005 1.189 0.133 $ \left| {39} \right\rangle $ 2.658 –0.02 –0.63 0 1.114 0.084 0.261 $ \left| {41} \right\rangle $ 2.659 –0.01 0.63 0 1.114 0.084 0.261 $ \left| {56} \right\rangle $ 2.948 0.42 –0.63 0 0.026 1.412 0.305 $ \left| {57} \right\rangle $ 2.949 –0.52 0.55 0 0.026 1.411 0.303 表 2 各自旋动力学过程中初、末态的能量、自旋期望值与自旋密度
Table 2. Energies, spin expectation values, and spin densities of the initial and final states of each scenario.
Scenario Structure State Energy/eV $ \left\langle { {S}_{x} } \right\rangle $ $ \left\langle { {S}_{y} } \right\rangle $ $ \left\langle { {S}_{z} } \right\rangle $ Spin density Fe1 Fe2 Flip FeB20 $ \left| {4} \right\rangle $ 1.021 –0.94 0 0 1.291 — (B: θ = 90°, φ = 90°) $ \left| {6} \right\rangle $ 1.022 0.94 0 0 1.291 — Fe2B20 $ \left| {8} \right\rangle $ 0.856 0 0 0.89 0.006 1.785 (B: θ = 0°, φ = 90°) $ \left| {9} \right\rangle $ 0.857 0 0 –0.89 0.006 1.785 Transfer Fe2B20 $ \left| {1} \right\rangle $ 0 0.38 –0.87 0 0.001 1.919 (B: θ = 90°, φ = 90°) $ \left| {41} \right\rangle $ 2.659 0.01 0.63 0 1.114 0.084 Crossover FeB20 $ \left| {6} \right\rangle $ 1.022 0.94 0 0 1.291 — (B: θ = 90°, φ = 90°) $ \left| {7} \right\rangle $ 1.133 0 0 0 0 — Fe2B20 $ \left| {37} \right\rangle $ 2.371 0 0 0 0 0 (B: θ = 90°, φ = 90°) $ \left| {45} \right\rangle $ 2.784 0 –0.52 0 0.090 0.873 表 3 超快自旋动力学过程所需的激光参数, 其中 θ和φ为入射激光在球坐标系下的方位角, γ为入射激光振动方向和光平面的夹角, FWHM为激光脉冲的半高全宽
Table 3. Laser parameters for the achieved scenarios. Here, θ and φ denote the angles of the incidence in spherical coordinates, and γ is the angle between the polarization of the light and the optical plane. FWHM is the full width at half maximum of the laser pulse.
Scenario Structure Initial/Final
stateFidelity Laser parameters θ/(º) φ(º) γ/(º) FWHM
/fsAmplitude
/(atomic units)Energy
/eVFlip FeB20 $ \left| {4} \right\rangle \to \left| {6} \right\rangle $ 89.7% 112.9 6.1 338.9 337.3 0.00997 0.299 Fe2B20 $ \left| {8} \right\rangle \to \left| {9} \right\rangle $ 93.5% 156.4 122.4 77.7 466.2 0.00634 2.114 Transfer Fe2B20 $ \left| {1} \right\rangle \to \left| {41} \right\rangle $ 91.9% 244.7 91.4 225.3 92.3 0.00781 2.661 Crossover FeB20 $ \left| {6} \right\rangle \to \left| {7} \right\rangle $ 77.9% 61.0 321.4 82.9 318.5 0.00783 0.212 Fe2B20 $ \left| {37} \right\rangle \to \left| {45} \right\rangle $ 74.5% 297.2 356.1 301.5 352.0 0.00306 0.416 表 A1 FeB20 and Fe2B20团簇所计算能态在未考虑SOC和考虑SOC之后的能量值(单位: eV)
Table A1. Energy values of the calculated states of clusters FeB20 and Fe2B20 before and after the inclusion of SOC (in eV)
FeB20 Fe2B20 Before SOC After SOC Before SOC After SOC Singlet 1.131 (1 1A') 1.133 1.504 (1 1A') 1.489 1.133 (2 1A') 1.134 1.850 (1 1A'') 1.857 2.320 (1 1A'') 2.319 2.199 (2 1A') 2.203 2.545 (SAC) 2.554 2.361 (SAC) 2.371 2.676 (2 1A'') 2.677 2.587 (3 1A') 2.592 2.676 (3 1A') 2.677 2.801 (2 1A'') 2.806 3.130 (3 1A'') 3.132 2.843 (4 1A') 2.845 3.636 (4 1A'') 3.638 2.996 (3 1A'') 3.002 4.266 (5 1A'') 4.269 3.133 (5 1A') 3.136 4.272 (4 1A') 4.272 3.429 (4 1A'') 3.434 4.282 (5 1A') 4.285 3.632 (5 1A'') 3.637 Triplet 0.000 (1 3A') 0.000 0.0005 0.001 0.000 (1 3A') 0.000 0.0007 0.002 1.019 (2 3A') 1.021 1.021 1.022 0.508 (1 3A'') 0.511 0.513 0.515 1.291 (3 3A') 1.271 1.271 1.294 0.851 (2 3A') 0.854 0.857 0.857 1.293 (1 3A'') 1.295 1.313 1.317 1.545 (2 3A'') 1.548 1.551 1.570 1.476 (2 3A'') 1.475 1.478 1.478 1.668 (3 3A') 1.673 1.673 1.673 2.361 (3 3A'') 2.363 2.363 2.364 1.793 (4 3A') 1.797 1.797 1.797 2.945 (4 3A'') 2.947 2.947 2.948 1.984 (5 3A') 1.989 1.989 1.989 3.119 (5 3A'') 3.120 3.121 3.121 1.997 (3 3A'') 2.001 2.002 2.003 3.462 (4 3A') 3.464 3.465 3.466 2.089 (6 3A') 2.093 2.094 2.094 3.467 (6 3A'') 3.470 3.471 3.471 2.100 (4 3A'') 2.105 2.105 2.105 3.471 (7 3A'') 3.473 3.473 3.474 2.112 (7 3A') 2.113 2.116 2.116 3.743 (5 3A') 3.745 3.745 3.745 2.653 (8 3A') 2.658 2.658 2.659 3.753 (8 3A'') 3.755 3.755 3.756 2.707 (5 3A'') 2.711 2.713 2.714 3.990 (6 3A') 3.989 3.990 3.994 2.779 (9 3A') 2.784 2.784 2.784 4.000 (7 3A') 4.003 4.008 4.008 2.783 (6 3A'') 2.787 2.788 2.788 4.419 (8 3A') 4.421 4.421 4.421 2.934 (10 3A') 2.939 2.939 2.940 4.435 (9 3A'') 4.436 4.436 4.438 2.943 (7 3A'') 2.948 2.949 2.952 4.436 (9 3A') 4.438 4.440 4.440 3.144 (8 3A'') 3.150 3.151 3.152 4.536 (10 3A') 4.528 4.528 4.539 3.301 (9 3A'') 3.305 3.306 3.306 4.540 (10 3A'') 4.543 4.554 4.557 3.338 (10 3A'') 3.343 3.343 3.344 -
[1] Bogani L, Wernsdorfer W 2008 Nat. Mater. 7 179
Google Scholar
[2] Khajetoorians A A, Heinrich A J 2016 Science 352 296
Google Scholar
[3] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488
Google Scholar
[4] Prinz G A 1998 Science 282 1660
Google Scholar
[5] Bader S D, Parkin S S P 2010 Annu. Rev. Condens. Matter Phys. 1 71
Google Scholar
[6] Dietl T 2005 J. Magn. Magn. Mater. 290-291 14
Google Scholar
[7] Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F 1988 Phys. Rev. Lett. 61 2472
Google Scholar
[8] Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250
Google Scholar
[9] Scholl A, Baumgarten L, Jacquemin R, Eberhardt W 1997 Phys. Rev. Lett. 79 5146
Google Scholar
[10] Pfau B, Schaffert S, Müller L, Gutt C, Al-shemmary. A, Büttner F, Delaunay R, Düsterer S, Flewett S, Frömter R, Geilhufe J, Guehrs E, Günther C M, Hawaldar R, Hille M, Jaouen N, Kobs A, Li K, Mohanty J, Redlin H, Schlotter W F, Stickler D, Treusch R, Vodungbo B, Kläui M, Oepen H P, Lüning J, Grübel G, Eisebitt S 2012 Nat. Commun. 3 1100
Google Scholar
[11] Koopmans B, Ruigrok J J M, Longa F D, de Jonge W J M 2005 Phys. Rev. Lett. 95 267207
Google Scholar
[12] Steiauf D, Fähnle M 2009 Phys. Rev. B 79 140401
Google Scholar
[13] Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203
Google Scholar
[14] Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515
Google Scholar
[15] Gómez-Abal R, Hübner W 2002 Phys. Rev. B 65 195114
Google Scholar
[16] Zhang Z Z, Cui B, Wang G Z, Ma B, Jin Q Y, Liu Y W 2010 Appl. Phys. Lett. 97 172508
Google Scholar
[17] Zhang W, Liu Q, Yuan Z, Xia K, He W, Zhan Q F, Zhang X Q, Cheng Z H 2019 Phys. Rev. B 100 104412
Google Scholar
[18] Lefkidis G, Reyes S A 2016 Phys. Rev. B 94 144433
Google Scholar
[19] 李春, 杨帆, Lefkidis G, Hübner W 2011 60 017802
Google Scholar
Li C, Yang F, Lefkidis G, Hübner W 2011 Acta Phys. Sin. 60 017802
Google Scholar
[20] Chaudhuri D, Xiang H P, Lefkidis G, Hübner W 2014 Phys. Rev. B 90 245113
Google Scholar
[21] Jin W, Li C, Lefkidis G, Hübner W 2014 Phys. Rev. B 89 024419
Google Scholar
[22] Chaudhuri D, Lefkidis G, Hübner W 2017 Phys. Rev. B 96 184413
Google Scholar
[23] Li C, Zhang S B, Jin W, Lefkidis G, Hübner W 2014 Phys. Rev. B 89 184404
Google Scholar
[24] Lefkidis G, Hübner W 2007 Phys. Rev. B 76 014418
Google Scholar
[25] Dong C D, Lefkidis G, Hübner W 2013 Phys. Rev. B 88 214421
Google Scholar
[26] Hübner W, Lefkidis G 2014 Phys. Rev. B 90 024401
Google Scholar
[27] Liu J, Li C, Jin W, Lefkidis G, Hübner W 2021 Phys. Rev. Lett. 126 037402
Google Scholar
[28] Li J H, Sun F, Du H L, Hong H L, Wang K H, Bian J 2019 Univ. Chem. Educ. 34 117
Google Scholar
[29] Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. U. S. A. 102 961
Google Scholar
[30] An W, Bulusu S, Gao Y, Zeng X C 2006 J. Chem. Phys. 124 154310
Google Scholar
[31] Marques M A L, Botti S 2005 J. Chem. Phys. 123 014310
Google Scholar
[32] Tian J F, Xu Z C, Shen C M, Liu F, Xu N S, Gao H J 2010 Nanoscale 2 1375
Google Scholar
[33] 刘立仁, 雷雪玲, 陈杭, 祝恒江 2009 58 5355
Google Scholar
Liu L R, Lei X L, Chen H, Zhu H J 2009 Acta Phys. Sin. 58 5355
Google Scholar
[34] Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M, Ahlrichs R 2007 Angew. Chem. Int. Edit. 46 8503
Google Scholar
[35] Li W L, Romanescu C, Jian T, Wang L S 2012 J. Am. Chem. Soc. 134 13228
Google Scholar
[36] Liu C S, Wang X F, Ye X J, Yan X H, Zeng Z 2014 J. Chem. Phys. 141 194306
Google Scholar
[37] Liang W Y, Das A, Dong X, Cui Z H 2018 Phys. Chem. Chem. Phys. 20 16202
Google Scholar
[38] Xu C, Cheng L J, Yang J L 2014 J. Chem. Phys. 141 124301
Google Scholar
[39] Tam N M, Pham H T, Duong L V, Pham-Ho, My P, Nguyen M T 2015 Phys. Chem. Chem. Phys. 17 3000
Google Scholar
[40] Ruan W, Xie A D, Wu D L, Luo W L, Yu X G 2014 Chin. Phys. B 23 033101
Google Scholar
[41] 阮文, 余晓光, 谢安东, 伍冬兰, 罗文浪 2014 63 243101
Google Scholar
Ruan W, Yu X G, Xie A D, Wu D L, Luo W L 2014 Acta Phys. Sin. 63 243101
Google Scholar
[42] 雷雪玲, 祝恒江, 葛桂贤, 王先明, 罗有华 2008 57 5491
Google Scholar
Lei X L, Zhu H J, Ge G X, Wang X M, Luo Y H 2008 Acta Phys. Sin. 57 5491
Google Scholar
[43] Popov I A, Jian T, Lopez G V, Boldyrev A I, Wang L S 2015 Nat. Commun. 6 8654
Google Scholar
[44] Penev E S, Bhowmick S, Sadrzadeh A, Yakobson B I 2012 Nano Lett. 12 2441
Google Scholar
[45] Li X Y, Li X X, Yang J L 2019 J. Phys. Chem. Lett. 10 4417
Google Scholar
[46] Liu J, Zhang Y M, Li C, Jin W, Lefkidis G, Hübner W 2020 Phys. Rev. B 102 024416
Google Scholar
[47] Hübner W, Kersten S, Lefkidis G 2009 Phys. Rev. B 79 184431
Google Scholar
[48] Li C, Jin W, Xiang H P, Lefkidis G, Hübner W 2011 Phys. Rev. B 84 054415
Google Scholar
[49] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian16 Revision B. 01 (Gaussian Inc., Wallingford, CT)
[50] Jin W, Rupp F, Chevalier K, Wolf M M N, Colindres Rojas M, Lefkidis G, Krüger H J, Diller R, Hübner W 2012 Phys. Rev. Lett. 109 267209
Google Scholar
[51] Nakatsuji H 1979 Chem. Phys. Lett. 67 329
Google Scholar
[52] Koseki S, Schmidt M W, Gordon M S 1998 J. Phys. Chem. A 102 10430
Google Scholar
[53] Lefkidis G, Hübner W 2005 Phys. Rev. Lett. 95 077401
Google Scholar
[54] Cash J R, Karp A H 1990 ACM Trans. Math. Softwave 16 201
Google Scholar
[55] Hartenstein T, Li C, Lefkidis G, Hübner W 2008 J. Phys. D: Appl. Phys. 41 164006
Google Scholar
[56] Du H, Liu J, Zhang N, Chang J, Jin W, Li C, Lefkidis G, Hübner W 2019 Phys. Rev. B 99 134430
Google Scholar
[57] Zhang N, Du H, Chang J, Jin W, Li C, Lefkidis G, Hübner W 2018 Phys. Rev. B 98 104431
Google Scholar
[58] Wang P P, Qiu M Y, Lu X, Jin W, Li C, Lefkidis G, Hübner W 2020 Phys. Rev. B 101 104414
Google Scholar
[59] Hogue R W, Singh S, Brooker S 2018 Chem. Soc. Rev. 47 7303
Google Scholar
[60] Rupp F, Chevalier K, Graf M, Schmitz M, Kelm H, Grün A, Zimmer M, Gerhards M, van Wüllen C, Krüger H J, Diller R 2017 Chem. Eur. J. 23 2119
Google Scholar
[61] Her J L, Matsuda Y H, Nakano M, Niwa Y, Inada Y 2012 J. Appl. Phys. 111 053921
Google Scholar
[62] Létard J F, Guionneau P, Goux-Capes L 2004 Towards Spin Crossover Applications, in Spin Crossover in Transition Metal Compounds III, Topics in Current Chemistry (Vol. 235) (Berlin, Heidelberg: Springer) pp221−249
[63] Bousseksou A, Molnár G, Salmon L, Nicolazzi W 2011 Chem. Soc. Rev. 40 3313
Google Scholar
Catalog
Metrics
- Abstract views: 6334
- PDF Downloads: 121
- Cited By: 0