Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase diagram and dielectric properties of orientation-dependent PbZr0.52Ti0.48O3 epitaxial films

Bai Gang Lin Cui Liu Duan-Sheng Xu Jie Li Wei Gao Cun-Fa

Citation:

Phase diagram and dielectric properties of orientation-dependent PbZr0.52Ti0.48O3 epitaxial films

Bai Gang, Lin Cui, Liu Duan-Sheng, Xu Jie, Li Wei, Gao Cun-Fa
PDF
HTML
Get Citation
  • Exploring phase transition behaviors and constructing phase diagrams are of importance for theoretically and experimentally studying ferroelectric physics and materials. Because of the rapid development of computers and artificial intelligence, especially machine learning methods combined with other computational methods such as first principle calculation, it is possible to predict and choose appropriate materials that meet the target requirements from a large number of material data, which greatly saves the cost of experiments. In this work, we use neural network method and phenomenological theoretical calculations to accurately predict the phase structures that may appear in the phase diagrams of different orientated Pb(Zr0.52Ti0.48)O3 ferroelectric films, and establish the temperature-strain phase diagrams of (001), (110) and (111) oriented thin film, and calculate the polarization and dielectric properties of different oriented films at room temperature. By analyzing the changes of prediction accuracy and loss with the number of iterations, it is found that the deep neural network method has the advantages of high accuracy and speed in the construction of the film temperature-strain phase diagram and the prediction of the types of phases. Through the analysis of the room temperature polarization and dielectric properties, it is found that the (111)-oriented PbZr0.52Ti0.48O3 film has the largest out-of-plane polarization and the smallest out-of-plane dielectric coefficient, and they are insensitive to misfit strain. This work provides guidelines for designing micro-nano devices that require the stable dielectric coefficient and polarization performance in the special working environment and operation.
      Corresponding author: Bai Gang, baigang@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51602159, 61804080)
    [1]

    Scott J 2007 Science 315 954Google Scholar

    [2]

    Dawber M, Rabe K, Scott J 2005 Rev. Mod. Phys. 77 1083Google Scholar

    [3]

    Schlom D, Chen L, Eom C, Rabe K, Streiffer S, Triscone J 2007 Annu. Rev. Mater. Res. 37 589Google Scholar

    [4]

    Agar J, Pandya S, Xu R, Yadav A, Liu Z, Angsten T, Saremi S, Asta M, Ramesh R, Martin L 2016 MRS Commun. 6 151Google Scholar

    [5]

    Martin L, Chu Y, Ramesh R 2010 Mater. Sci. Eng. 68 89Google Scholar

    [6]

    Schlom D, Chen L, Pan X, Schmehl A, Zurbuchen M 2008 J. Am. Ceram. Soc. 91 2429Google Scholar

    [7]

    Choi K, Biegalski M, Li Y, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y, Pan X, Gopalan V, Chen L, Schlom D, Eom C 2004 Science 306 1005Google Scholar

    [8]

    Haeni J, Irvin P, Chang W, Uecker R, Reiche P, Li Y, Choudhury S, Tian W, Hawley M, Craigo B, Tagantsev A, Pan X, Streiffer S, Chen L, Kirchoefer S, Levy J, Schlom D 2004 Nature (London) 430 758Google Scholar

    [9]

    Sone K, Naganuma H, Miyazaki T, Nakajima T, Okamura S 2010 Jpn. J. Appl. Phys. 49 09MB03Google Scholar

    [10]

    Xu R, Liu S, Grinberg I, Karthik J, Damodaran A, Rappe A, Martin L 2015 Nat. Mater. 14 79Google Scholar

    [11]

    Simon W, Akdogan E, Safari A 2005 J. Appl. Phys. 97 103530Google Scholar

    [12]

    Simon W, Akdogan E, Safari A, Bellotti J 2005 Appl. Phys. Lett. 87 082906Google Scholar

    [13]

    Simon W, Akdogan E, Safari A, Bellotti J 2006 Appl. Phys. Lett. 88 132902Google Scholar

    [14]

    Gui Z, Prosandeev S, Bellaiche L 2011 Phys. Rev. B 84 214112Google Scholar

    [15]

    Raeliarijaona A, Fu H 2014 J. Appl. Phys. 115 054105Google Scholar

    [16]

    Oja R, Johnston K, Frantti J, Nieminen R 2008 Phys. Rev. B 78 094102Google Scholar

    [17]

    Angsten T, Martin L, Asta M 2017 Phys. Rev. B 95 174110Google Scholar

    [18]

    Tagantsev A K, Pertsev N A, Muralt P, Setter N 2002 Phys. Rev. B 65 012104Google Scholar

    [19]

    Akcay G, Misirlioglu I B, Alpay S P 2006 Appl. Phys. Lett. 89 042903Google Scholar

    [20]

    Zhang J X, Li Y L, Wang Y, Lliu Z K, Chen L Q, Chu Y H, Zavaliche F, Ramesh R 2007 J. Appl. Lett. 101 114105Google Scholar

    [21]

    Wu H, Ma X, Zhang Z, Zeng J, Wang J, Chai G 2016 AIP Adv. 6 015309Google Scholar

    [22]

    Mtebwa M, Tagantsev A K, Yamada T, Gemeiner P, Dkhil B, Setter N 2016 Phys. Rev. B 93 144113Google Scholar

    [23]

    Wang F, Ma W 2019 J. Appl. Lett. 125 082528Google Scholar

    [24]

    Qiu J, Chen Z, Wang X, Yuan N, Ding J 2016 Solid State Comm. 246 5Google Scholar

    [25]

    Qiu J, Chen Z, Wang X, Yuan N, Ding J 2016 Solid State Comm. 236 1Google Scholar

    [26]

    Li L, Yang Y, Zhang D, Ye Z, Jesse S, Kalinin S, Vasudevan R 2018 Sci. Adv. 4 eaap8672Google Scholar

    [27]

    Yuan R, Tian Y, Xue D, Xue D, Zhou Y, Ding X, Sun J, Lookman T 2019 Adv. Sci. 6 1901395Google Scholar

    [28]

    Pertsev N, Zembilgotov A, Tagantsev A 1998 Phys. Rev. Lett. 80 1988Google Scholar

    [29]

    Liu Y and Li J 2011 Phys. Rev. B 84 132104Google Scholar

    [30]

    Chen L 2007 Landau Free-Energy Coefficients, Physics of Ferroelectrics: A Modern Perspective (Berlin: Springer-Verlag)

    [31]

    Liu D, Bai G, Gao C 2020 J. Appl. Lett. 127 154101Google Scholar

    [32]

    Hornik K, Stinchcombe M, White H 1989 Neural. Netw. 2 359Google Scholar

    [33]

    Zhu Z, Li J, Lai F, Zhen Y, Lin Y, Nan C, Li L 2007 Appl. Phys. Lett. 91 222910Google Scholar

    [34]

    Peng B, Zhang Q, Bai G, Leighton G, Shaw C, Milne S, Zou B, Sun W, Huang H, Wang Z 2019 Energy Environ. Sci. 12 1708Google Scholar

    [35]

    Huang H, Zhang G, Ma X, Liang D, Wang J, Liu Y, Wang Q, Chen L 2018 J. Am. Ceram. Soc. 101 1566Google Scholar

  • 图 1  (a) 定向构造的训练集示例; (b) DNNs预测准确率及损失随迭代次数的变化; (c) DNNs预测的(110)取向的PZT52/48相图

    Figure 1.  (a) Constructed training set example; (b) the accuracy and loss of DNNs as a function of the number of iterations; (c) the temperature-misfit strain phase diagram of (110) oriented PZT52/48 thin film obtained by DNNs classification.

    图 2  (a), (c), (e)分别为(001), (110), (111)取向薄膜可能存在相的结构示意图; (b), (d), (f)分别为(001), (110), (111)取向PZT52/48薄膜的相图, 其中粗线表示一级相变, 细线表示二级相变

    Figure 2.  Schematic diagrams of phase structures for (001) (a), (110) (c) and (111) (e) oriented ferroelectric PZT52/48 films; temperature-strain phase diagrams of (001) (b), (110) (d) and (111) (f) oriented PZT52/48 films. Thick and thin lines denote the first order and second order transitions, respectively.

    图 3  (a) (001), (b) (110)和(c) (111)取向PZT54/48薄膜的室温极化随应变的变化

    Figure 3.  Strain dependent polarization of (a) (001), (b) (110), (c) (111) oriented PZT52/48 films at room temperature

    图 4  在室温下, (a) (001), (b) (110)和(c) (111)取向PZT52/48薄膜的介电系数随应变的变化

    Figure 4.  Strain dependent dielectric coefficients of (a) (001), (b) (110) and (c) (111) oriented PZT52/48 films at room temperature.

    表 1  不同取向PZT52/48薄膜相图中出现的相的极化分量的特征

    Table 1.  Polarization components of the different phases occurring in strain-temperature phase diagrams of (001), (110), and (111) oriented PZT52/48 films.

    相结构全局坐标晶体坐标
    (001)顺电p${P_1} = {P_2} = {P_3} = 0$${P_1} = {P_2} = {P_3} = 0$
    四方T${P_1} = {P_2} = 0, {P_3} \ne 0$${P_1} = {P_2} = 0, {P_3} \ne 0$
    单斜M${P_1} = {P_2} \ne 0, {P_3} \ne 0$${P_1} = {P_2} \ne 0, {P_3} \ne 0$
    正交O${P_1} = {P_2} \ne 0, {P_3} = 0$${P_1} = {P_2} \ne 0, {P_3} = 0$
    (110)顺电p${P'_1} = {P'_2} = {P'_3} = 0$${P_1} = {P_2} = {P_3} = 0$
    正交O${P'_1} = {P'_2} = 0, {P'_3}\ne 0$${P_1} = {P_2} \ne 0, {P_3} = 0$
    单斜MB${P'_1} < {P'_{\rm{3} } } {\rm{/} }\sqrt {\rm{2} }, {P'_{\rm{2} } } = 0$${P_1} = {P_2} > {P_3}$
    单斜MA${P'_1} > {P'_{\rm{2} } } {\rm{/} }\sqrt {\rm{2} }, {P'_3} = 0$${P_1} = {P_2} < {P_3}$
    四方T${P'_1} \ne {\rm{0 } },{P'_{\rm{2} } } = 0, {P'_3} = 0$$ {P}_{1}{} = {P}_{2}=0, {P}_{3}\ne \rm{0}$
    (111)顺电p${P''_1}= {P''_2} = {P''_3} = 0$${P_1} = {P_2} = {P_3} = 0$
    三方R${P''_1} = {P''_2} = 0, \;{P''_3} \ne 0$${P_1} = {P_2} = {P_3} \ne 0$
    单斜MB${P''_1} = 0, {P''_2} \ne 0, {P''_3} \ne 0$${P_1} = {P_2} > {P_3} \ne {\rm{0}}$
    DownLoad: CSV
    Baidu
  • [1]

    Scott J 2007 Science 315 954Google Scholar

    [2]

    Dawber M, Rabe K, Scott J 2005 Rev. Mod. Phys. 77 1083Google Scholar

    [3]

    Schlom D, Chen L, Eom C, Rabe K, Streiffer S, Triscone J 2007 Annu. Rev. Mater. Res. 37 589Google Scholar

    [4]

    Agar J, Pandya S, Xu R, Yadav A, Liu Z, Angsten T, Saremi S, Asta M, Ramesh R, Martin L 2016 MRS Commun. 6 151Google Scholar

    [5]

    Martin L, Chu Y, Ramesh R 2010 Mater. Sci. Eng. 68 89Google Scholar

    [6]

    Schlom D, Chen L, Pan X, Schmehl A, Zurbuchen M 2008 J. Am. Ceram. Soc. 91 2429Google Scholar

    [7]

    Choi K, Biegalski M, Li Y, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y, Pan X, Gopalan V, Chen L, Schlom D, Eom C 2004 Science 306 1005Google Scholar

    [8]

    Haeni J, Irvin P, Chang W, Uecker R, Reiche P, Li Y, Choudhury S, Tian W, Hawley M, Craigo B, Tagantsev A, Pan X, Streiffer S, Chen L, Kirchoefer S, Levy J, Schlom D 2004 Nature (London) 430 758Google Scholar

    [9]

    Sone K, Naganuma H, Miyazaki T, Nakajima T, Okamura S 2010 Jpn. J. Appl. Phys. 49 09MB03Google Scholar

    [10]

    Xu R, Liu S, Grinberg I, Karthik J, Damodaran A, Rappe A, Martin L 2015 Nat. Mater. 14 79Google Scholar

    [11]

    Simon W, Akdogan E, Safari A 2005 J. Appl. Phys. 97 103530Google Scholar

    [12]

    Simon W, Akdogan E, Safari A, Bellotti J 2005 Appl. Phys. Lett. 87 082906Google Scholar

    [13]

    Simon W, Akdogan E, Safari A, Bellotti J 2006 Appl. Phys. Lett. 88 132902Google Scholar

    [14]

    Gui Z, Prosandeev S, Bellaiche L 2011 Phys. Rev. B 84 214112Google Scholar

    [15]

    Raeliarijaona A, Fu H 2014 J. Appl. Phys. 115 054105Google Scholar

    [16]

    Oja R, Johnston K, Frantti J, Nieminen R 2008 Phys. Rev. B 78 094102Google Scholar

    [17]

    Angsten T, Martin L, Asta M 2017 Phys. Rev. B 95 174110Google Scholar

    [18]

    Tagantsev A K, Pertsev N A, Muralt P, Setter N 2002 Phys. Rev. B 65 012104Google Scholar

    [19]

    Akcay G, Misirlioglu I B, Alpay S P 2006 Appl. Phys. Lett. 89 042903Google Scholar

    [20]

    Zhang J X, Li Y L, Wang Y, Lliu Z K, Chen L Q, Chu Y H, Zavaliche F, Ramesh R 2007 J. Appl. Lett. 101 114105Google Scholar

    [21]

    Wu H, Ma X, Zhang Z, Zeng J, Wang J, Chai G 2016 AIP Adv. 6 015309Google Scholar

    [22]

    Mtebwa M, Tagantsev A K, Yamada T, Gemeiner P, Dkhil B, Setter N 2016 Phys. Rev. B 93 144113Google Scholar

    [23]

    Wang F, Ma W 2019 J. Appl. Lett. 125 082528Google Scholar

    [24]

    Qiu J, Chen Z, Wang X, Yuan N, Ding J 2016 Solid State Comm. 246 5Google Scholar

    [25]

    Qiu J, Chen Z, Wang X, Yuan N, Ding J 2016 Solid State Comm. 236 1Google Scholar

    [26]

    Li L, Yang Y, Zhang D, Ye Z, Jesse S, Kalinin S, Vasudevan R 2018 Sci. Adv. 4 eaap8672Google Scholar

    [27]

    Yuan R, Tian Y, Xue D, Xue D, Zhou Y, Ding X, Sun J, Lookman T 2019 Adv. Sci. 6 1901395Google Scholar

    [28]

    Pertsev N, Zembilgotov A, Tagantsev A 1998 Phys. Rev. Lett. 80 1988Google Scholar

    [29]

    Liu Y and Li J 2011 Phys. Rev. B 84 132104Google Scholar

    [30]

    Chen L 2007 Landau Free-Energy Coefficients, Physics of Ferroelectrics: A Modern Perspective (Berlin: Springer-Verlag)

    [31]

    Liu D, Bai G, Gao C 2020 J. Appl. Lett. 127 154101Google Scholar

    [32]

    Hornik K, Stinchcombe M, White H 1989 Neural. Netw. 2 359Google Scholar

    [33]

    Zhu Z, Li J, Lai F, Zhen Y, Lin Y, Nan C, Li L 2007 Appl. Phys. Lett. 91 222910Google Scholar

    [34]

    Peng B, Zhang Q, Bai G, Leighton G, Shaw C, Milne S, Zou B, Sun W, Huang H, Wang Z 2019 Energy Environ. Sci. 12 1708Google Scholar

    [35]

    Huang H, Zhang G, Ma X, Liang D, Wang J, Liu Y, Wang Q, Chen L 2018 J. Am. Ceram. Soc. 101 1566Google Scholar

  • [1] Song Rui, Liu Xue-Mei, Wang Hai-Bin, Lü Hao, Song Xiao-Yan. Hardness prediction of WC-Co cemented carbide based on machine learning model. Acta Physica Sinica, 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [2] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of Magnetic Janus Materials Based on Machine Learning and First-Principles Calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [4] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [5] Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei. Modeling ferroelectric phase transitions with graph convolutional neural networks. Acta Physica Sinica, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [6] Guo Wei-Chen, Ai Bao-Quan, He Liang. Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [7] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [8] Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei. Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [9] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [10] Jiang Yong-Lin, He Chang-Chun, Yang Xiao-Bao. Theoretical prediction of solution in ScxY1–x Fe2 and order-disorder transitions in V2x Fe2(1–x)Zr. Acta Physica Sinica, 2021, 70(21): 213601. doi: 10.7498/aps.70.20210998
    [11] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [12] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [13] Wang Wei, Jie Quan-Lin. Identifying phase transition point of J1-J2 antiferromagnetic Heisenberg spin chain by machine learning. Acta Physica Sinica, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [14] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [15] Zhang Long, Weng Zheng-Yu. Phase string effect and mutual Chern-Simons theory of Hubbard model. Acta Physica Sinica, 2015, 64(21): 217101. doi: 10.7498/aps.64.217101
    [16] Wang Xin-Yu, Chu Rui-Jiang, Wei Sheng-Nan, Dong Zheng-Chao, Zhong Chong-Gui, Cao Hai-Xia. Phenomenological theory for investigation on stress tunable electrocaloric effect in ferroelectric EuTiO3 films. Acta Physica Sinica, 2015, 64(11): 117701. doi: 10.7498/aps.64.117701
    [17] Wen Juan-Hui, Yang Qiong, Cao Jue-Xian, Zhou Yi-Chun. Strain control of the leakage current of the ferroelectric thin films. Acta Physica Sinica, 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
    [18] Lu Zhao-Xin. Effects of parameter modifications on phase transition properties of ferroelectric thin films. Acta Physica Sinica, 2013, 62(11): 116802. doi: 10.7498/aps.62.116802
    [19] Liang Xiao-Lin, Gong Yue-Qiu, Liu Zhi-Zhuang, Lü Ye-Gang, Zheng Xue-Jun. Effect of external electric field on phase transitions of ferroelectric thin films. Acta Physica Sinica, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [20] Wang Long-Hai, Yu Jun, Liu Feng, Zheng Chao-Dan, Li Jia, Wang Yun-Bo, Gao Jun-Xiong, Wang Zhi-Hong, Zeng Hui-Zhong, Zhao Su-Ling. The domain and domain wall structure of PT/PZT/PT ferroelectric thin film. Acta Physica Sinica, 2006, 55(5): 2590-2595. doi: 10.7498/aps.55.2590
Metrics
  • Abstract views:  4664
  • PDF Downloads:  82
  • Cited By: 0
Publishing process
  • Received Date:  19 December 2020
  • Accepted Date:  25 January 2021
  • Available Online:  10 June 2021
  • Published Online:  20 June 2021

/

返回文章
返回
Baidu
map