搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三氨基三硝基苯基高聚物粘结炸药热力学性质的理论计算研究

范航 何冠松 杨志剑 聂福德 陈鹏万

引用本文:
Citation:

三氨基三硝基苯基高聚物粘结炸药热力学性质的理论计算研究

范航, 何冠松, 杨志剑, 聂福德, 陈鹏万

Theoretical study of interface thermodynamic properties of 1,3,5-triamino-2,4,6-trinitrobenzene based polymer bonded explosives

Fan Hang, He Guan-Song, Yang Zhi-Jian, Nie Fu-De, Chen Peng-Wan
PDF
HTML
导出引用
  • 高聚物粘结炸药(PBX)的热力学性质是用于炸药结构响应、安全性评估、数值模拟分析等的重要参数. 由于PBX结构的多尺度特性, 完全采取实验方法精细表征这些参数存在巨大的挑战. 本文运用第一性原理和分子动力学计算的方法, 系统研究了三氨基三硝基苯(TATB)基高聚物粘结炸药的热力学参数和界面热传导性质. 利用散射失配模型研究了TATB与聚偏二氟乙烯(PVDF)界面的热传导过程, 发现热导率随温度升高而上升, 并且在高温情况下接近于定值. 基于分子动力学获得的TATB热导率并结合界面热导率, 分析了PBX炸药的热导与颗粒尺寸的关系, 当颗粒尺寸大于100 nm时, 界面热阻对于PBX热导率的影响有限.
    The thermodynamic properties of insensitive high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) based polymer bonded explosives (PBXs) are investigated by using first principle calculation and molecular dynamics simulation. The results include the phonon dispersion relations, interface thermal conductances, and thermal conductivities of TATB based PBXs. Both TATB and PVDF structures are optimized, in which the optimized lattice constants accord with previous results. The phonon dispersion relation of TATB and PVDF are calculated based on lattice dynamics. All interatomic force constants are calculated by the finite displacement method (numerical derivatives from perturbed supercells). The calculated phonon dispersion relation of TATB and heat capacity are in general agreement with experimental and theoretical results. The imaginary frequencies are observed in both TATB and PVDF dispersion relation. The imaginary frequencies are mainly due to the smaller calculated supercell size and temperature effect. The phonon mode of TATB and PVDF are assigned at Γ point. Based on the calculated phonon dispersion, some information including heat capacity, phonon density of states and phonon mode assignment is derived. The TATB possesses 144 phonon modes including 3 acoustic-phonon modes and 141 optical phonon modes. The anylized phonon mode of TATB shows that -NO2 dominates the phonon DOS in low frequency zone, phenyl rings dominate in middle frequency zone and -NH2 dominates in high frequency zone. By analyzing the phonon density of states and capacity, both TATB and PVDF imply that low-frequency vibration dominates the thermal conductivity. The thermal conductivity is determined for TATB by using the equlibrium molecular dynamics method and an established TATB force field. The TATB model is built with 2880 atoms. The structure of TATB is optimized by using molecular mechanics, then this system is relaxed by using a Nose-Hoover thermostat and barostat with a damping factor of 50 fs cin time steps of 0.1 fs. The calcultated thermal conductivity at room temperature shows good agreement with experimental result. The interface thermal conductance of TATB-PVDF is calculated by using a diffusive mismatch model. The interface thermal transport still follows Fourier’s law of heat conduction, and ballistic thermal transport mechanism is not involved. By using the above results, the thermal conductivity of mixture TATB-PVDF system is analized with a simple series model. The particle size smaller than 100 nm significantly suppresses the mixture system thermal conductivity.
      通信作者: 陈鹏万, pwchen@bit.edu.cn
    • 基金项目: 国家自然科学基金委员会与中国工程物理研究院联合基金(批准号: U1530262, U1330202)、国家自然科学基金(批准号: 21875230)和中国工程物理研究院院长基金(批准号: YZJJLX2016005)资助的课题.
      Corresponding author: Chen Peng-Wan, pwchen@bit.edu.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant Nos. U1530262, U1330202), the National Natural Science Foundation of China (Grant No. 21875230), and the Presidential Foundation of CAEP (Grant No. YZJJLX2016005).
    [1]

    董海山, 周芬芬1989 高能炸药及相关物性能(北京: 科学出版社)第2页

    Dong H S, Zhou F F 1989 High Energy Explosive Property (Beijing: Science Press) p2 (in Chinese)

    [2]

    李尚困, 黄西成, 王鹏飞 2016 火炸药学报 39 001

    Li S K, Huang X C, Wang P F 2016 Chin. J. Explos. Propellants 39 001

    [3]

    Voigt-Martin I G, Li G, Yakimanski A, Schulz G, Jens Wolff J J 1996 J. Am. Chem. Soc. 118 12830Google Scholar

    [4]

    Brill T B, James K J 1993 Chem. Rev. 93 2667Google Scholar

    [5]

    Zyss J, Ledoux I 1994 Chem. Rev. 94 77Google Scholar

    [6]

    He G S, Yang Z J, Zhou X Y, Zhang J H, Pan L P, Liu S J 2016 Comp. Sci. Tech. 131 22Google Scholar

    [7]

    Siviour C R, Gifford M J, Waller S M, Proud W G, Field J E 2004 J. Mater. Sci. 39 1255Google Scholar

    [8]

    Lin C M, He G S, Liu J H, Pan L P, Liu S J 2015 RSC Adv. 5 98514Google Scholar

    [9]

    Gee R H, Roszak S, Balasubramanian K, Fried L E 2004 J. Chem. Phys. 120 7059Google Scholar

    [10]

    Bedrov D, Borodin O, Smith G D, Sewell T D, Dattelbaum D M 2009 J. Chem. Phys. 131 224703Google Scholar

    [11]

    Stevens L L, Velisavljevic N, Hooks D E, Dattelbaum D M 2008 Propell. Explos. Pyrot. 33 286Google Scholar

    [12]

    Rykounov A A 2015 J. Appl. Phys. 117 215901Google Scholar

    [13]

    Kroonblawd M P, Sewell T D 2013 J. Chem. Phys. 139 074503Google Scholar

    [14]

    Kroonblawd M P, Sewell T D 2014 J. Chem. Phys. 141 184501Google Scholar

    [15]

    Fan H, Long Y, Ding L, Chen J, Nie F D 2017 Comp. Mater. Sci. 131 321Google Scholar

    [16]

    蒋文灿, 陈华, 张伟斌 2016 65 126301Google Scholar

    Jiang W C, Chen H, Zhang W B 2016 Acta Phys. Sin. 65 126301Google Scholar

    [17]

    Wu Z Q, Mou W W, Kalia R, Nakano A, Vashishta P 2015 Int. J. Energ. Mater. Chem. Prop. 14 519

    [18]

    Liu H, Zhao J, Ji G, Wei D, Gong Z 2006 Phys. Lett. A 358 63Google Scholar

    [19]

    Long Y, Chen J 2014 Model. Simul. Mater. Sci. Eng. 22 035013Google Scholar

    [20]

    Long Y, Chen J 2018 Model. Simul. Mater. Sci. Eng. 26 015002Google Scholar

    [21]

    Born M, Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Oxford University Press) p38

    [22]

    程和平, 陈光华, 覃睿, 但加坤, 黄智蒙, 彭辉, 陈图南, 雷江波 2014 物理化学学报 30 281Google Scholar

    Cheng H P, Chen G H, Qin R, Dan J K, Huang Z M, Peng H, Chen T N, Lei J B 2014 Acta Phys. Chim. Sin. 30 281Google Scholar

    [23]

    Hasegawa R, Takahashi Y, Chatani Y, Tadokoro H 1972 Polym. J. 3 600Google Scholar

    [24]

    Kunc K, Louis S G 1985 Electronic Structure, Dynamics, and Quantum Structural Properties of Condensed Matter (New York: Springer US) p227, p335

    [25]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [26]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [30]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [31]

    鲍华 2013 62 186302Google Scholar

    Bao H 2013 Acta Phys. Sin. 62 186302Google Scholar

    [32]

    Bellis L D, Phelan P E, Prasher R S 2000 J. Thermophys. Heat. Tr. 14 144Google Scholar

    [33]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [34]

    Kubo R 1966 Rep. Prog. Phys. 29 255

    [35]

    Green M S 1954 J. Chem. Phys. 22 398Google Scholar

    [36]

    Kubo R 1957 J. Phys. Soc. Jpn. 12 570Google Scholar

    [37]

    Long Y, Chen J 2014 J. Appl. Phys. 116 033516Google Scholar

    [38]

    Long Y, Liu Y G, Nie F D, Chen J 2012 Model. Simul. Mater. Sci. Eng. 20 065010Google Scholar

    [39]

    Plimpton S 1995 J. Comp. Phys. 117 1Google Scholar

    [40]

    Mcgrane S, Shreve A 2003 J. Chem. Phys. 119 5834Google Scholar

    [41]

    Olinger B W, Cady H H 1976 Conference: 6. Symposium on Detonation San Diego, California, August 24-27, 1976

    [42]

    Dobratz B M 1995 The Insensitive High Explosive Triaminotrinitrobenzene (TATB): Development and Characterization—1888 to 1994, Report no. LA-13014-H, 1995p33

  • 图 1  TATB和PVDF晶体结构图

    Fig. 1.  The crystal structure of TATB (a), and PVDF (b).

    图 2  (a), (b) TATB和PVDF声子色散曲线; (c) TATB晶格热容随温度的变化; (d), (e) TATB和PVDF第一布里渊区高对称点积分路径

    Fig. 2.  The phonon dispersion relation of TATB (a), and PVDF (b); (c) the heat capacity of TATB as a function of temperature; the Brillouin zone and high symmetry points of TATB (d), and PVDF (e).

    图 3  (a), (b) TATB和PVDF的Γ点声子模分析; (c), (d) TATB和PVDF的加权声子态密度和声子态密度(小图)

    Fig. 3.  Decomposition of the gamma-point eigenmodes of TATB (a), and PVDF (b); the weighted phonon density of states of TATB (c), and PVDF (d).

    图 4  (a) TATB-PVDF界面热导率随温度变化情况; (b) TATB-PVDF界面声子透射率(黑)和累积热导率(红)

    Fig. 4.  (a) The interface thermal conductance of TATB-PVDF as a function of temperature; (b) phonon transmission of TATB-PVDF interface as a function of frequency.

    图 5  (a) EMD方法计算TATB热导率结果; (b) TATB基PBX炸药热导率随颗粒尺寸的变化

    Fig. 5.  (a) EMD calculation of TATB thermal conductivity; (b) thermal conductivity of TATB-based PBXs as a function of particle size.

    表 1  TATB部分Raman活性模计算数值与文献结果的比较

    Table 1.  Comparison of the Raman modes of TATB crystal obtained in the present and previous calculations with experimental results.

    声子模 本文工作 蒋文灿等[16] Liu等[18]/cm–1 Exp.[40]/cm–1 不可约表示
    波数/cm–1 偏差/% 波数/cm–1 偏差/%
    Q27 283 –4.30 288 –2.70 292 296 E′
    Q30 284 –4.32 289 –2.69 295 297 E′
    Q32 330 –0.45 331 –0.30 312 332 E″
    Q33 331 –1.01 332 –0.59 318 334 E″
    Q36 352 –4.53 359 –2.71 370 369 E′
    Q38 354 –4.55 362 –2.42 371 371 E′
    Q42 380 –2.72 382 –2.30 391 391 ${\rm{A}}_2'$
    Q44 431 –3.19 440 –1.12 436 445 E′
    Q46 432 –3.88 441 –1.78 438 449 E′
    Q50 507 –3.27 518 –1.14 520 524 E′
    Q64 699 –0.72 680 –3.41 704 704 E′
    Q65 700 –0.72 696 –1.27 708 705 E′
    Q88 869 –0.28 846 –2.87 870 871 E′
    Q89 872 –0.39 851 –2.74 874 875 E′
    Q91 1027 –0.06 996 –3.11 1026 1028 E′
    Q94 1029 –0.23 1001 –2.91 1032 1031 E′
    Q105 1217 0.14 1154 –5.02 1215 1215 E′
    Q107 1221 0.19 1162 –4.67 1219 1219 E′
    Q109 1308 –0.34 1244 –5.18 1320 1312 E′
    Q111 1313 –0.35 1250 –5.16 1327 1318 E′
    Q119 1442 –0.33 1407 –2.76 1446 1447 E′
    Q127 1551 –0.93 1542 –1.53 1575 1566 ${\rm{A}}_1'$
    Q129 1560 –2.07 1548 –2.82 1586 1593 E′
    Q130 1564 –2.33 1549 –3.25 1596 1601 E′
    Q134 3281 2.39 3325 3.78 3313 3204 E′
    Q138 3298 2.66 3351 4.29 3334 3213 ${\rm{A}}_1'$
    Q142 3399 2.91 3439 4.12 3436 3303 E′
    下载: 导出CSV
    Baidu
  • [1]

    董海山, 周芬芬1989 高能炸药及相关物性能(北京: 科学出版社)第2页

    Dong H S, Zhou F F 1989 High Energy Explosive Property (Beijing: Science Press) p2 (in Chinese)

    [2]

    李尚困, 黄西成, 王鹏飞 2016 火炸药学报 39 001

    Li S K, Huang X C, Wang P F 2016 Chin. J. Explos. Propellants 39 001

    [3]

    Voigt-Martin I G, Li G, Yakimanski A, Schulz G, Jens Wolff J J 1996 J. Am. Chem. Soc. 118 12830Google Scholar

    [4]

    Brill T B, James K J 1993 Chem. Rev. 93 2667Google Scholar

    [5]

    Zyss J, Ledoux I 1994 Chem. Rev. 94 77Google Scholar

    [6]

    He G S, Yang Z J, Zhou X Y, Zhang J H, Pan L P, Liu S J 2016 Comp. Sci. Tech. 131 22Google Scholar

    [7]

    Siviour C R, Gifford M J, Waller S M, Proud W G, Field J E 2004 J. Mater. Sci. 39 1255Google Scholar

    [8]

    Lin C M, He G S, Liu J H, Pan L P, Liu S J 2015 RSC Adv. 5 98514Google Scholar

    [9]

    Gee R H, Roszak S, Balasubramanian K, Fried L E 2004 J. Chem. Phys. 120 7059Google Scholar

    [10]

    Bedrov D, Borodin O, Smith G D, Sewell T D, Dattelbaum D M 2009 J. Chem. Phys. 131 224703Google Scholar

    [11]

    Stevens L L, Velisavljevic N, Hooks D E, Dattelbaum D M 2008 Propell. Explos. Pyrot. 33 286Google Scholar

    [12]

    Rykounov A A 2015 J. Appl. Phys. 117 215901Google Scholar

    [13]

    Kroonblawd M P, Sewell T D 2013 J. Chem. Phys. 139 074503Google Scholar

    [14]

    Kroonblawd M P, Sewell T D 2014 J. Chem. Phys. 141 184501Google Scholar

    [15]

    Fan H, Long Y, Ding L, Chen J, Nie F D 2017 Comp. Mater. Sci. 131 321Google Scholar

    [16]

    蒋文灿, 陈华, 张伟斌 2016 65 126301Google Scholar

    Jiang W C, Chen H, Zhang W B 2016 Acta Phys. Sin. 65 126301Google Scholar

    [17]

    Wu Z Q, Mou W W, Kalia R, Nakano A, Vashishta P 2015 Int. J. Energ. Mater. Chem. Prop. 14 519

    [18]

    Liu H, Zhao J, Ji G, Wei D, Gong Z 2006 Phys. Lett. A 358 63Google Scholar

    [19]

    Long Y, Chen J 2014 Model. Simul. Mater. Sci. Eng. 22 035013Google Scholar

    [20]

    Long Y, Chen J 2018 Model. Simul. Mater. Sci. Eng. 26 015002Google Scholar

    [21]

    Born M, Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Oxford University Press) p38

    [22]

    程和平, 陈光华, 覃睿, 但加坤, 黄智蒙, 彭辉, 陈图南, 雷江波 2014 物理化学学报 30 281Google Scholar

    Cheng H P, Chen G H, Qin R, Dan J K, Huang Z M, Peng H, Chen T N, Lei J B 2014 Acta Phys. Chim. Sin. 30 281Google Scholar

    [23]

    Hasegawa R, Takahashi Y, Chatani Y, Tadokoro H 1972 Polym. J. 3 600Google Scholar

    [24]

    Kunc K, Louis S G 1985 Electronic Structure, Dynamics, and Quantum Structural Properties of Condensed Matter (New York: Springer US) p227, p335

    [25]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [26]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [30]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [31]

    鲍华 2013 62 186302Google Scholar

    Bao H 2013 Acta Phys. Sin. 62 186302Google Scholar

    [32]

    Bellis L D, Phelan P E, Prasher R S 2000 J. Thermophys. Heat. Tr. 14 144Google Scholar

    [33]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [34]

    Kubo R 1966 Rep. Prog. Phys. 29 255

    [35]

    Green M S 1954 J. Chem. Phys. 22 398Google Scholar

    [36]

    Kubo R 1957 J. Phys. Soc. Jpn. 12 570Google Scholar

    [37]

    Long Y, Chen J 2014 J. Appl. Phys. 116 033516Google Scholar

    [38]

    Long Y, Liu Y G, Nie F D, Chen J 2012 Model. Simul. Mater. Sci. Eng. 20 065010Google Scholar

    [39]

    Plimpton S 1995 J. Comp. Phys. 117 1Google Scholar

    [40]

    Mcgrane S, Shreve A 2003 J. Chem. Phys. 119 5834Google Scholar

    [41]

    Olinger B W, Cady H H 1976 Conference: 6. Symposium on Detonation San Diego, California, August 24-27, 1976

    [42]

    Dobratz B M 1995 The Insensitive High Explosive Triaminotrinitrobenzene (TATB): Development and Characterization—1888 to 1994, Report no. LA-13014-H, 1995p33

  • [1] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究.  , 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [2] 胡庭赫, 李直昊, 张千帆. 元素掺杂对储氢容器用高强钢性能影响的第一性原理和分子动力学模拟.  , 2024, 73(6): 067101. doi: 10.7498/aps.73.20231735
    [3] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究.  , 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [4] 章其林, 王瑞丰, 周同, 王允杰, 刘琪. 一维有序单链水红外吸收光谱的分子动力学模拟.  , 2023, 72(8): 084207. doi: 10.7498/aps.72.20222031
    [5] 卢欣, 谢孟琳, 刘景, 金蔚, 李春, GeorgiosLefkidis, WolfgangHübner. FemB20 (m = 1, 2)团簇中超快自旋动力学的第一性原理研究.  , 2021, 70(12): 127505. doi: 10.7498/aps.70.20210056
    [6] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究.  , 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [7] 陈玉江, 江五贵, 林演文, 郑盼. 一种新型的三壁碳纳米管螺旋振荡器:分子动力学模拟.  , 2020, 69(22): 228801. doi: 10.7498/aps.69.20200821
    [8] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析.  , 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [9] 邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平. 二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数.  , 2016, 65(6): 066401. doi: 10.7498/aps.65.066401
    [10] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算.  , 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [11] 罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌. CdxZn1-xO合金热力学性质的第一性原理研究.  , 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [12] 范航, 聂福德, 龙瑶, 陈军. 钝感高能炸药三氨基三硝基苯高温高压下热力学性质的分子动力学模拟研究.  , 2016, 65(6): 066201. doi: 10.7498/aps.65.066201
    [13] 陈基, 冯页新, 李新征, 王恩哥. 基于路径积分分子动力学与热力学积分方法的高压氢自由能计算.  , 2015, 64(18): 183101. doi: 10.7498/aps.64.183101
    [14] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究.  , 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [15] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算.  , 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [16] 忻晓桂, 陈香, 周晶晶, 施思齐. LiFePO4 晶格动力学性质的第一性原理研究.  , 2011, 60(2): 028201. doi: 10.7498/aps.60.028201
    [17] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质.  , 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [18] 李雪梅, 韩会磊, 何光普. LiNH2 的晶格动力学、介电性质和热力学性质第一性原理研究.  , 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [19] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究.  , 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [20] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究.  , 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
计量
  • 文章访问数:  10268
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-03-27
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回
Baidu
map