Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phenomenological theory for investigation on stress tunable electrocaloric effect in ferroelectric EuTiO3 films

Wang Xin-Yu Chu Rui-Jiang Wei Sheng-Nan Dong Zheng-Chao Zhong Chong-Gui Cao Hai-Xia

Citation:

Phenomenological theory for investigation on stress tunable electrocaloric effect in ferroelectric EuTiO3 films

Wang Xin-Yu, Chu Rui-Jiang, Wei Sheng-Nan, Dong Zheng-Chao, Zhong Chong-Gui, Cao Hai-Xia
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Researches on electrocaloric effects of ferroelectric materials and their applications in solid-state refrigeration have attracted great interest in recent years. EuTiO3 is a new multiferroic material with many special physical properties, such as high dielectric constant, low dielectric-loss, as well as their responses to tunable external electric field and temperature. With EuTiO3 ferroelectric thin films, their polarization size and phase transition process not only can be changed by regulating external electric field and temperature applied, but also can be controlled by adjusting the external stress applied and the lattice mismatch with the substrate in a large scale. Accordingly, in this paper a phenomenological Landau-Devonshire thermodynamic theory is used to investigate the ferroelectric properties and electrocaloric effects of EuTiO3 ferroelectric films under different external tensile stresses (σ3 > 0) perpendicular to the film surface and different in-plane compressive strains. We have calculated the electric polarizations, electrocaloric coefficients and adiabatic temperature differences as a function of temperature for EuTiO3 ferroelectric films with a biaxial in-plane misfit strain um =-0.005 under different applied stresses. Results demonstrate that the changes of the electric polarization, the electrocaloric coefficient and the adiabatic temperature differences conform with the regulation of externally applied stresses. With the enhancement of applied tensile stress perpendicular to the film surface, the phase transition temperature and adiabatic temperature change of EuTiO3 thin film increase, and the operating temperature corresponding to the maximum adiabatic temperature difference moves toward high temperature region. For the thin films with a biaxial in-plane misfit compressive strain um =-0.005 and the external tensile stress σ3 = 5 GPa, when the change of electric field strength is 200 MV/m, the adiabatic temperature differences at room temperature can be over 14 K, and the maximum electrocaloric coefficient may approach 1.75×10-3 C/m2·K. In the meantime, the working temperature range, when the adiabatic temperature differences go beyond 13 K, is over 120 K. Then we investigate the effect of in-plane compressive strains on the changes of adiabatic temperature, showing that with the increase of compressive strain um, the adiabatic temperature change will also increase and the peak of the curve of adiabatic temperature change versus temperature will shift toward high temperature zone far away from room temperature. Therefore, the above results show that we can not only have relatively bigger adiabatic temperature differences in epitaxially grown EuTiO3 thin films through the regulation of external stresses and in-plane lattice misfit strain, but also a sound application prospect of ferroelectric EuTiO3 thin film in solid-state refrigeration at room temperature.
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012655).
    [1]

    Moya X, Stern-Taulats E, Crossley S, González-Alonso D, Kar-Narayan S, Planes A, Maosa L, MathurN D 2013 Adv. Mater. 25 136

    [2]

    Lisenkov S, Ponomareva I 2009 Phys. Rev. B 80 140102

    [3]

    Lu S G, Zhang Q M 2009 Adv. Mater. 21 1983

    [4]

    Zhang H B, Wu H P, Zhou T, Zhang Z, Chai G Z 2013 Acta. Phys. Sin. 62 247701 (in Chinese) [张杭波, 吴化平, 周挺, 张征, 柴国钟 2013 62 247701]

    [5]

    Peng B, Fan H, Zhang Q 2013 Adv. Funct. Mater. 23 2987

    [6]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270

    [7]

    Neese B, Chu B J, Lu S G, Wang Y, Furman E, Zhang Q M 2008 Science 321 821

    [8]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q and Yang J 2011 Eur. Phys. J. B 84 25

    [9]

    Hamad M A 2013 AIP Advances 3 032115

    [10]

    Dai X, Cao H X, Jiang Q, Lo V C 2009 J. Appl. Phys. 106 034103

    [11]

    Li B, Ren W J, Wang X W, Meng H, Liu X G, Wang Z J, Zhang Z D 2010 Appl. Phys. Lett. 96 102903

    [12]

    Zhang J, Alpay S P, Rossetti G A 2011 Appl. Phys. Lett. 98 132907

    [13]

    Pirc R, Kutnjak Z, Blinc R, Zhang Q M 2011 J. Appl. Phys. 110 074113

    [14]

    Lisenkov S, Ponomareva I 2012 Phys. Rev. B 86 104103

    [15]

    Cao H X, Li Z Y 2009 J. Appl. Phys. 106 094104

    [16]

    Lee J H, Fang L, Vlahos E, Ke X, Jung Y W, Kourkoutis L F, Kim J W, Ryan P J, Heeg T, Roeckrath M, Goian V, Bernhagen M, Uecker R, Hammel P C, Rabe K M, Kamba S, Schubert J, Freeland J W, Muller D A, Fennie C J, Schiffer P, Gopalan V, Johnston H E, Schiom D G 2010 Nature 466 954

    [17]

    Zhou W L, Xia K, Xu D, Zhong C G, Dong Z C, Fang J H 2012 Acta. Phys. Sin. 61 097702 (in Chinese) [周文亮, 夏坤, 许达, 仲崇贵, 董正超, 方靖淮 2012 61 097702]

    [18]

    Morozovska A N, Glinchuk M D, Behera R K, Zaulychny B, Deo C S, Eliseev E A 2011 Phys. Rev. B 84 205403

    [19]

    Schlom D G, Chen L Q, Eom Ch B, Rabe K M, Streiffer S K, Triscone J M 2007 Annu. Rev. Mater. Res. 37 589

    [20]

    Jiang Q, Wu H 2002 Chin. Phys. B 11 1303

    [21]

    Ryan P J, Kim J W, Birol T, Thompson P, Lee J H, Ke X, Normile P S, Karapetrova E, Schiffer P, Brown S D, Fennie C J, Schlom D G 2013 Nat. Commun. 4 1334

    [22]

    Yang Y, Ren W, Wang D, and Bellaiche L 2012 Phys. Rev. Lett. 109 267602

    [23]

    Liu P F, Meng X J, Chu J H, Geneste G, Dkhil B 2009 J. Appl. Phys. 105 114105

    [24]

    Akcay G, Alpay S P, Mantese J V, Rossetti G A 2007 Appl. Phys. Lett. 90 252909

    [25]

    Bai G, Li R, Liu Z G, Xia Y D, Yin J 2012 J. Appl. Phys. 111 044102

    [26]

    Liu Y, Peng X, Lou X, Zhou H 2012 Appl. Phys. Lett. 100 192902

    [27]

    Hao X, Zhai J 2014 Appl. Phys. Lett. 104 022902

    [28]

    Muta H, Ieda A, Kurosaki K, Yamanaka S 2005 Mater. Trans. 46 1466

    [29]

    Fennie C J, Rabe K M 2006 Phys. Rev. Lett. 97 267602

    [30]

    Wu H P, Xu B, Liu A P, Chai G Z 2012 J. Appl. D:Appl. Phys. 45 455306

    [31]

    Qiu J H, Jiang Q 2008 Phys. Lett. A 372 7191

    [32]

    Peng B L, Fan H Q, Zhang Q 2013 Adv. Funct. Mater. 23 2987

    [33]

    Saranya D, Chaudhuri A R, Parui J, Krupanidhi S B 2009 Bull. Mater. Sci. 32 259

    [34]

    Liu Y, Infante I C, Lou X, Lupascu D C, Dkhil B 2014 Appl. Phys. Lett. 104 012907

    [35]

    Bai Y, Zheng G P, Ding K, Qiao L J, Shi S Q, Guo D 2011 J. Appl. Phys. 110 094103

    [36]

    Li B, Wang J B, Zhong X L, Wang F, Wang L J, Zhou Y C 2013 J. Appl. Phys. 114 044301

  • [1]

    Moya X, Stern-Taulats E, Crossley S, González-Alonso D, Kar-Narayan S, Planes A, Maosa L, MathurN D 2013 Adv. Mater. 25 136

    [2]

    Lisenkov S, Ponomareva I 2009 Phys. Rev. B 80 140102

    [3]

    Lu S G, Zhang Q M 2009 Adv. Mater. 21 1983

    [4]

    Zhang H B, Wu H P, Zhou T, Zhang Z, Chai G Z 2013 Acta. Phys. Sin. 62 247701 (in Chinese) [张杭波, 吴化平, 周挺, 张征, 柴国钟 2013 62 247701]

    [5]

    Peng B, Fan H, Zhang Q 2013 Adv. Funct. Mater. 23 2987

    [6]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270

    [7]

    Neese B, Chu B J, Lu S G, Wang Y, Furman E, Zhang Q M 2008 Science 321 821

    [8]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q and Yang J 2011 Eur. Phys. J. B 84 25

    [9]

    Hamad M A 2013 AIP Advances 3 032115

    [10]

    Dai X, Cao H X, Jiang Q, Lo V C 2009 J. Appl. Phys. 106 034103

    [11]

    Li B, Ren W J, Wang X W, Meng H, Liu X G, Wang Z J, Zhang Z D 2010 Appl. Phys. Lett. 96 102903

    [12]

    Zhang J, Alpay S P, Rossetti G A 2011 Appl. Phys. Lett. 98 132907

    [13]

    Pirc R, Kutnjak Z, Blinc R, Zhang Q M 2011 J. Appl. Phys. 110 074113

    [14]

    Lisenkov S, Ponomareva I 2012 Phys. Rev. B 86 104103

    [15]

    Cao H X, Li Z Y 2009 J. Appl. Phys. 106 094104

    [16]

    Lee J H, Fang L, Vlahos E, Ke X, Jung Y W, Kourkoutis L F, Kim J W, Ryan P J, Heeg T, Roeckrath M, Goian V, Bernhagen M, Uecker R, Hammel P C, Rabe K M, Kamba S, Schubert J, Freeland J W, Muller D A, Fennie C J, Schiffer P, Gopalan V, Johnston H E, Schiom D G 2010 Nature 466 954

    [17]

    Zhou W L, Xia K, Xu D, Zhong C G, Dong Z C, Fang J H 2012 Acta. Phys. Sin. 61 097702 (in Chinese) [周文亮, 夏坤, 许达, 仲崇贵, 董正超, 方靖淮 2012 61 097702]

    [18]

    Morozovska A N, Glinchuk M D, Behera R K, Zaulychny B, Deo C S, Eliseev E A 2011 Phys. Rev. B 84 205403

    [19]

    Schlom D G, Chen L Q, Eom Ch B, Rabe K M, Streiffer S K, Triscone J M 2007 Annu. Rev. Mater. Res. 37 589

    [20]

    Jiang Q, Wu H 2002 Chin. Phys. B 11 1303

    [21]

    Ryan P J, Kim J W, Birol T, Thompson P, Lee J H, Ke X, Normile P S, Karapetrova E, Schiffer P, Brown S D, Fennie C J, Schlom D G 2013 Nat. Commun. 4 1334

    [22]

    Yang Y, Ren W, Wang D, and Bellaiche L 2012 Phys. Rev. Lett. 109 267602

    [23]

    Liu P F, Meng X J, Chu J H, Geneste G, Dkhil B 2009 J. Appl. Phys. 105 114105

    [24]

    Akcay G, Alpay S P, Mantese J V, Rossetti G A 2007 Appl. Phys. Lett. 90 252909

    [25]

    Bai G, Li R, Liu Z G, Xia Y D, Yin J 2012 J. Appl. Phys. 111 044102

    [26]

    Liu Y, Peng X, Lou X, Zhou H 2012 Appl. Phys. Lett. 100 192902

    [27]

    Hao X, Zhai J 2014 Appl. Phys. Lett. 104 022902

    [28]

    Muta H, Ieda A, Kurosaki K, Yamanaka S 2005 Mater. Trans. 46 1466

    [29]

    Fennie C J, Rabe K M 2006 Phys. Rev. Lett. 97 267602

    [30]

    Wu H P, Xu B, Liu A P, Chai G Z 2012 J. Appl. D:Appl. Phys. 45 455306

    [31]

    Qiu J H, Jiang Q 2008 Phys. Lett. A 372 7191

    [32]

    Peng B L, Fan H Q, Zhang Q 2013 Adv. Funct. Mater. 23 2987

    [33]

    Saranya D, Chaudhuri A R, Parui J, Krupanidhi S B 2009 Bull. Mater. Sci. 32 259

    [34]

    Liu Y, Infante I C, Lou X, Lupascu D C, Dkhil B 2014 Appl. Phys. Lett. 104 012907

    [35]

    Bai Y, Zheng G P, Ding K, Qiao L J, Shi S Q, Guo D 2011 J. Appl. Phys. 110 094103

    [36]

    Li B, Wang J B, Zhong X L, Wang F, Wang L J, Zhou Y C 2013 J. Appl. Phys. 114 044301

  • [1] Bai Gang, Han Yu-Hang, Gao Cun-Fa. Phase transitions and electrocaloric effects of (111)-oriented K0.5Na0.5NbO3 epitaxial films: effect of external stress and misfit strains. Acta Physica Sinica, 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [2] Wang Wei, Jie Quan-Lin. Identifying phase transition point of J1-J2 antiferromagnetic Heisenberg spin chain by machine learning. Acta Physica Sinica, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [3] Yang Pei-Di, Ouyang Chen, Hong Tian-Shu, Zhang Wei-Hao, Miao Jun-Gang, Wu Xiao-Jun. Study of phase transition of single crystal and polycrystalline vanadium dioxide nanofilms by using continuous laser pump-terahertz probe technique. Acta Physica Sinica, 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [4] Jiang Zhao-Xiu, Wang Yong-Gang, Nie Heng-Chang, Liu Yu-Sheng. Effects of poling state and direction on domain switching and phase transformation of Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression. Acta Physica Sinica, 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [5] Li Jun, Wu Qiang, Yu Ji-Dong, Tan Ye, Yao Song-Lin, Xue Tao, Jin Ke. Orientation effect of alpha-to-epsilon phase transformation in single-crystal iron. Acta Physica Sinica, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [6] Sun Jing-Yang, Wang Dong-Ming, Lü Ye-Gang, Wang Miao, Wang Yi-Man, Shen Xiang, Wang Guo-Xiang, Dai Shi-Xun. Structure and phase change in Cu-Ge3Sb2Te5 films for use in phase change random access memory. Acta Physica Sinica, 2015, 64(1): 016103. doi: 10.7498/aps.64.016103
    [7] Jiang Zhao-Xiu, Xin Ming-Zhi, Shen Hai-Ting, Wang Yong-Gang, Nie Heng-Chang, Liu Yu-Sheng. Mechanical properties and phase transformation of porous unpoled Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression. Acta Physica Sinica, 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [8] Wang Chang-Zhou, Zhu Wei-Ling, Zhai Ji-Wei, Lai Tian-Shu. Phase-change behaviors in Ga30Sb70/Sb80Te20 nanocomposite multilayer films. Acta Physica Sinica, 2013, 62(3): 036402. doi: 10.7498/aps.62.036402
    [9] Liu Zhi-Qiang, Chang Sheng-Jiang, Wang Xiao-Lei, Fan Fei, Li Wei. Thermally controlled terahertz metamaterial modulator based on phase transition of VO2 thin film. Acta Physica Sinica, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [10] Lu Zhao-Xin. Effects of parameter modifications on phase transition properties of ferroelectric thin films. Acta Physica Sinica, 2013, 62(11): 116802. doi: 10.7498/aps.62.116802
    [11] Zhang Hang-Bo, Wu Hua-Ping, Zhou Ting, Zhang Zheng, Chai Guo-Zhong. The effect of out-of-plane strain on the electrocaloric performances of P(VDF-TrFE) vertical heteroepitaxial film. Acta Physica Sinica, 2013, 62(24): 247701. doi: 10.7498/aps.62.247701
    [12] Jiang Dong-Dong, Gu Yan, Feng Yu-Jun, Du Jin-Mei. Phase transformation and dielectric properties of lead zirconate stannate titanate ferroelectric ceramic under hydraulic compression. Acta Physica Sinica, 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [13] Wang Zhi-Gang, Wu Liang, Zhang Yang, Wen Yu-Hua. Phase transition and coalescence behavior of fcc Fe nanoparticles: a molecular dynamics study. Acta Physica Sinica, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [14] Xie Kang, Zhang Peng-Xiang, Hu Jun-Tao, Zhang Hui, Zhu Jie. Laser-induced voltage effect in Pb(Zr0.3Ti0.7)O3 ferroelectric thin film. Acta Physica Sinica, 2010, 59(9): 6417-6422. doi: 10.7498/aps.59.6417
    [15] Liang Xiao-Lin, Gong Yue-Qiu, Liu Zhi-Zhuang, Lü Ye-Gang, Zheng Xue-Jun. Effect of external electric field on phase transitions of ferroelectric thin films. Acta Physica Sinica, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [16] Li Yong-Hua, Liu Chang-Sheng, Meng Fan-Ling, Wang Yu-Ming, Zheng Wei-Tao. X-ray photoelectron spectroscopy analysis of the effect of thickness on the transformation temperature of NiTi alloy thin films. Acta Physica Sinica, 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [17] Lu Zhi-Peng, Zhu Wen-Jun, Liu Shao-Jun, Lu Tie-Cheng, Chen Xiang-Rong. Structure phase transition from α to ε in Fe under non-hydrostatic pressure: an ab initio study. Acta Physica Sinica, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [18] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [19] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [20] LIU PENG, YANG TONG-QING, ZHANG LIANG-YING, YAO XI. INVESTIGATION OF DIFFUSED PHASE TRANSITION AND POLAR RELAXATION IN Pb(Zr,Sn,Ti)O3 ANTIFERROELECTRIC CERAMICS. Acta Physica Sinica, 2000, 49(11): 2300-2303. doi: 10.7498/aps.49.2300
Metrics
  • Abstract views:  6085
  • PDF Downloads:  255
  • Cited By: 0
Publishing process
  • Received Date:  25 December 2014
  • Accepted Date:  13 January 2015
  • Published Online:  05 June 2015

/

返回文章
返回
Baidu
map