Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Discharge model and plasma characteristics of high-power pulsed magnetron sputtering titanium target

Chen Chang-Zi Ma Dong-Lin Li Yan-Tao Leng Yong-Xiang

Citation:

Discharge model and plasma characteristics of high-power pulsed magnetron sputtering titanium target

Chen Chang-Zi, Ma Dong-Lin, Li Yan-Tao, Leng Yong-Xiang
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • High-power pulsed magnetron sputtering has become a popular research tool in surface technology industry because it can prepare the films with excellent surface quality. The plasma density and metal ionization rate are the key factors affecting the quality of the film deposited by high-power pulsed magnetron sputtering. The parameters of high-power pulsed magnetron sputtering (such as applied voltage, pulse width, deposition pressure and peak current) affect the plasma density and metal ionization rate. In this paper, in order to more easily understand the plasma densities and metal ionization rates at the different process parameters, the plasma densities and ionization rates are calculated numerically. An equivalent circuit model established by MATLAB/Simulink software is used to obtain the discharge current curve of high-power pulsed magnetron sputtering titanium (Ti) target. The plasma density near the plasma sheath is calculated by the sheath resistance in the equivalent circuit model. The ionization rate of Ti is calculated by using the semi-cylinder global model theory combined with the discharge current simulated by equivalent circuit model. It is found that under the different high power pulse sputtering voltages, pulse widths and different deposition pressures, the discharge modes are of gas discharge and metal ion discharge, and the gas discharge interacts with metal ion discharge. The equivalent circuit model is produced by the main discharge mode, and the equivalent circuit model composed of capacitor, inductor and resistors in series and in parallel can be used to simulate the discharge current of Ti target. The result shows that the simulated discharge current is accurate in the rising edge and peak value in comparison with experimental data. The value of electron component in the model is related to the saturation ion current.According to the sheath resistance in the model, the average plasma density in the vacuum chamber increases with increasing sputtering voltage, pulse width and deposition pressure. And the plasma density in the vacuum chamber lies in a range of (2–9) × 1017 m–3. The particle equilibrium equation is established by using the semi-cylinder global model theory. The electron temperature (5 eV) and discharge current are used as boundary conditions to calculate the ionization rate of Ti. The value of the ionization rate of Ti is in a range of 31%–38% at different deposition pressures, and the ionization rate of Ti increases with the increase of deposition pressure.
      Corresponding author: Leng Yong-Xiang, yxleng@263.net
    • Funds: Project supported by the Fund of Science and Technology on Surface Physics and Chemistry Laboratory, China (Grant No. 6142A02190402)
    [1]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 68 195204Google Scholar

    Cui S H, Wu Z Z, Xiao S, Chen L, Li T J, Liu L L, Fu R K Y, Tian X B, Chu P K, Tan W C 2019 Acta Phys. Sin. 68 195204Google Scholar

    [2]

    Bobzin K, Brgelmann T, Kruppe N C, Carlet M 2020 Surf. Coat. Technol. 385 125370Google Scholar

    [3]

    Jing P P, Ma D L, Gong Y L, Luo X Y, Leng Y X 2020 Surf. Coat. Technol. 405 126542Google Scholar

    [4]

    Alami J, Sarakinos K, Uslu F, Wuttig M 2009 J. Phys. D: Appl. Phys. 42 015304Google Scholar

    [5]

    王愉, 陈畅子, 吴艳萍, 冷永祥 2017 表面技术 46 15Google Scholar

    Wang Y, Chen C Z, Wu Y P, Leng Y X 2017 Surface Technology 46 15Google Scholar

    [6]

    Bohlmark J, Lattemann M, Gudmundsson J T, Ehiasarian A P, Helmersson U 2006 Thin Solid Films 515 1522Google Scholar

    [7]

    Konstantinidis S, Dauchot J P, Ganciu M, Ricard A, Hecq M 2006 J. Appl. Phys. 99 013307Google Scholar

    [8]

    Yu H, Sporre J R, Liang M, McLain J T, Ruzic D N, Szott M M, Raman P 2015 J. Vac. Sci. Technol. A 33 031301Google Scholar

    [9]

    Bohlmark J, Helmersson U, Van Zeeland M, Axnis I, Alami J, Brenning N 2004 Plasma Sources Sci. Technol. 13 654Google Scholar

    [10]

    Gahan D, Dolinaj B, Hopkinsl M 2008 Rev. Sci. Instrum. 79 3455Google Scholar

    [11]

    Kirkpatrick S 2009 Ph. D. Dissertations (Nebraska: University of Nebraska)

    [12]

    Ken Y, Ryosuke M, Kingo A, Hiroshi T, Tadao O 2009 Nuclear Inst & Methods in Physics Research B 267 1692Google Scholar

    [13]

    Chen C Z, Ma D L, Huang N, Leng Y X 2019 Int. J. Mod. Phys. B 33 290Google Scholar

    [14]

    Zheng B C, Meng D, Che H L, Lei M K 2015 J. Appl. Phys. 117 290Google Scholar

    [15]

    Gudmundsson J T 2008 J. Phys. Conf. Ser. 100 082013Google Scholar

    [16]

    Hopwood J 1998 Phys. Plasmas 5 1624Google Scholar

    [17]

    Kozak T, Pajdarova A D 2011 J. Appl. Phys. 110 1661Google Scholar

    [18]

    Minea T M, Costin C, Revel A, Lundin D, Caillault L 2014 Surf. Coat. Technol. 255 52Google Scholar

    [19]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H, Ji S P, Tian X B, Fu Ricky K Y, Chu P K, Pan F 2015 AIP Adv. 5 097178Google Scholar

    [20]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H, Pan F, Tian X B, Fu R K Y, Chu P K 2016 Surf. Coat. Technol. 306 319Google Scholar

    [21]

    Liang M, Yu H, Szott M M, McLain J T, Ruzic D N 2014 J. Appl. Phys. 115 290Google Scholar

    [22]

    Ross A E, Ganesan R, Bilek M M M, McKenzie D R 2015 Plasma Sources Sci. Technol. 24 025018Google Scholar

    [23]

    Jing F J, Yin T L, K Yukimura, Sun H, Leng Y X, Huang N 2012 Vacuum 86 2114Google Scholar

    [24]

    Wu B H, Wu J, Jiang F, Ma D L, Chen C Z, Sun H, Leng Y X, Huang N 2017 Vacuum 135 93Google Scholar

    [25]

    Ma D L, Wu B H, Deng Q Y, Leng Y X, Huang N 2019 Vacuum 160 226Google Scholar

    [26]

    Raman P, Shchelkanov I, McLain J, Cheng M, Ruzic D, Haehnlein I, Jurczyk B, Stubbers R, Armstrong S 2016 Surf. Coat. Technol. 293 10Google Scholar

    [27]

    迈克尔 A 力伯曼, 阿伦 J 里登伯格 著 (蒲以康等 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第293页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) p293 (in Chinese)

    [28]

    André A 2010 Surf. Coat. Technol. 204 2864Google Scholar

    [29]

    André A, Joakim A, David H, Arutiun E 2011 Surf. Coat. Technol. 205 S1Google Scholar

    [30]

    André A, Joakim A, Arutiun E 2007 J. Appl. Phys. 102 113303Google Scholar

    [31]

    Brenning N, Axnas I, Raadu M A, Lundin D, Helmerson U 2008 Plasma Sources Sci. Technol. 17 045009Google Scholar

    [32]

    Ku V P T, Annaratone B M, Allen J E 1998 J. Appl. Phys. 84 6536Google Scholar

    [33]

    Bohlmark J, Alami J, Christou C 2005 J. Vac. Sci. Technol. A 23 18Google Scholar

    [34]

    Horwat D, Anders A 2008 J. Phys. D: Appl. Phys. 41 135210Google Scholar

    [35]

    林浩 2014 硕士学位论文 (西安: 西安电子科技大学)

    Lin H 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [36]

    吴忠振, 田修波, 李春伟, 傅劲裕, 潘锋, 朱剑豪 2014 63 175201Google Scholar

    Wu Z Z, Tian X B, Li C W, Fu R K Y, Pan F, Chu P K 2014 Acta Phys. Sin. 63 175201Google Scholar

    [37]

    Yushkov G Y, Anders A 2010 IEEE Trans. Plasma Sci. 38 3028Google Scholar

    [38]

    Ehiasarian A P, Vetushka A, Hecimovic A 2008 J. Appl. Phys. 104 267Google Scholar

    [39]

    吴保华, 冷永祥, 黄楠, 杨文茂, 李雪源 2018 表面技术 47 245Google Scholar

    Wu B H, Leng Y X, Huang N, Yang W M, Li X Y 2018 Surf. Technol. 47 245Google Scholar

  • 图 1  HPPMS放电离化区示意图[31]

    Figure 1.  Schematic diagram of HPPMS discharge ionization region[31].

    图 2  离化区等离子密度随垂直靶材方向距离的变化曲线

    Figure 2.  Variation curve of plasma density in ionization region with distance perpendicular to target direction.

    图 3  HPPMS电源[23]和放电区域的等效电路模型

    Figure 3.  Equivalent circuit model of HPPMS[23] power supply and discharge region.

    图 4  不同脉宽下放电电流仿真曲线和实际测量溅射电流曲线 (a) 30 μs; (b) 100 μs; (c) 160 μs

    Figure 4.  Simulation curve and actual measurement curve of discharge current under different pulse width: (a) 30 μs; (b) 100 μs; (c) 160 μs.

    图 5  不同HPPMS溅射电压下放电电流仿真曲线和实际测量溅射电流曲线 (a) 700 V; (b) 800 V; (c) 900 V

    Figure 5.  Simulation curve and actual measurement curve of discharge current under different HPPMS sputtering voltage: (a) 700 V; (b) 800 V; (c) 900 V.

    图 6  不同HPPMS沉积气压下放电电流仿真曲线和实际测量溅射电流曲线 (a) 0.4 Pa; (b) 1 Pa; (c) 2.5 Pa

    Figure 6.  Simulation curve and actual measurement curve of discharge current under different deposition pressure: (a) 0.4 Pa; (b) 1 Pa; (c)2.5 Pa.

    图 7  不同高功率脉冲磁控溅射工艺参数下的等离子密度 (a) 不同脉宽30, 100, 160 μs; (b) 不同电压700, 800, 900 V; (c)不同靶电流 113, 150, 185 A

    Figure 7.  Comparison of plasma density calculated by equivalent circuit (simulation) under different HPPMS process parameters: (a) Different pulse width (30, 100, 160 μs); (b) different sputtering voltages (700, 800, 900 V); (c) different target currents (113, 150, 185 A)

    图 8  HPPMS靶材及离化区几何模型 (a) Ti靶尺寸及磁铁布置; (b) Ti靶剖面图D-D; (c) 离化区半圆柱体几何模型

    Figure 8.  Geometricmodel of HPPMS target and ionization region: (a) Ti target size and magnet arrangement; (b) Ti target profile; (c) geometric model of semi cylinder in ionization region.

    图 9  不同气压下计算的 (a)粒子密度、(b)峰值电流及电子温度、(c)离化率

    Figure 9.  (a) Particle density, (b) peak current and electron temperature and (c) ion flux fraction calculated by the global model under different pressures.

    Baidu
  • [1]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 68 195204Google Scholar

    Cui S H, Wu Z Z, Xiao S, Chen L, Li T J, Liu L L, Fu R K Y, Tian X B, Chu P K, Tan W C 2019 Acta Phys. Sin. 68 195204Google Scholar

    [2]

    Bobzin K, Brgelmann T, Kruppe N C, Carlet M 2020 Surf. Coat. Technol. 385 125370Google Scholar

    [3]

    Jing P P, Ma D L, Gong Y L, Luo X Y, Leng Y X 2020 Surf. Coat. Technol. 405 126542Google Scholar

    [4]

    Alami J, Sarakinos K, Uslu F, Wuttig M 2009 J. Phys. D: Appl. Phys. 42 015304Google Scholar

    [5]

    王愉, 陈畅子, 吴艳萍, 冷永祥 2017 表面技术 46 15Google Scholar

    Wang Y, Chen C Z, Wu Y P, Leng Y X 2017 Surface Technology 46 15Google Scholar

    [6]

    Bohlmark J, Lattemann M, Gudmundsson J T, Ehiasarian A P, Helmersson U 2006 Thin Solid Films 515 1522Google Scholar

    [7]

    Konstantinidis S, Dauchot J P, Ganciu M, Ricard A, Hecq M 2006 J. Appl. Phys. 99 013307Google Scholar

    [8]

    Yu H, Sporre J R, Liang M, McLain J T, Ruzic D N, Szott M M, Raman P 2015 J. Vac. Sci. Technol. A 33 031301Google Scholar

    [9]

    Bohlmark J, Helmersson U, Van Zeeland M, Axnis I, Alami J, Brenning N 2004 Plasma Sources Sci. Technol. 13 654Google Scholar

    [10]

    Gahan D, Dolinaj B, Hopkinsl M 2008 Rev. Sci. Instrum. 79 3455Google Scholar

    [11]

    Kirkpatrick S 2009 Ph. D. Dissertations (Nebraska: University of Nebraska)

    [12]

    Ken Y, Ryosuke M, Kingo A, Hiroshi T, Tadao O 2009 Nuclear Inst & Methods in Physics Research B 267 1692Google Scholar

    [13]

    Chen C Z, Ma D L, Huang N, Leng Y X 2019 Int. J. Mod. Phys. B 33 290Google Scholar

    [14]

    Zheng B C, Meng D, Che H L, Lei M K 2015 J. Appl. Phys. 117 290Google Scholar

    [15]

    Gudmundsson J T 2008 J. Phys. Conf. Ser. 100 082013Google Scholar

    [16]

    Hopwood J 1998 Phys. Plasmas 5 1624Google Scholar

    [17]

    Kozak T, Pajdarova A D 2011 J. Appl. Phys. 110 1661Google Scholar

    [18]

    Minea T M, Costin C, Revel A, Lundin D, Caillault L 2014 Surf. Coat. Technol. 255 52Google Scholar

    [19]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H, Ji S P, Tian X B, Fu Ricky K Y, Chu P K, Pan F 2015 AIP Adv. 5 097178Google Scholar

    [20]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H, Pan F, Tian X B, Fu R K Y, Chu P K 2016 Surf. Coat. Technol. 306 319Google Scholar

    [21]

    Liang M, Yu H, Szott M M, McLain J T, Ruzic D N 2014 J. Appl. Phys. 115 290Google Scholar

    [22]

    Ross A E, Ganesan R, Bilek M M M, McKenzie D R 2015 Plasma Sources Sci. Technol. 24 025018Google Scholar

    [23]

    Jing F J, Yin T L, K Yukimura, Sun H, Leng Y X, Huang N 2012 Vacuum 86 2114Google Scholar

    [24]

    Wu B H, Wu J, Jiang F, Ma D L, Chen C Z, Sun H, Leng Y X, Huang N 2017 Vacuum 135 93Google Scholar

    [25]

    Ma D L, Wu B H, Deng Q Y, Leng Y X, Huang N 2019 Vacuum 160 226Google Scholar

    [26]

    Raman P, Shchelkanov I, McLain J, Cheng M, Ruzic D, Haehnlein I, Jurczyk B, Stubbers R, Armstrong S 2016 Surf. Coat. Technol. 293 10Google Scholar

    [27]

    迈克尔 A 力伯曼, 阿伦 J 里登伯格 著 (蒲以康等 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第293页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) p293 (in Chinese)

    [28]

    André A 2010 Surf. Coat. Technol. 204 2864Google Scholar

    [29]

    André A, Joakim A, David H, Arutiun E 2011 Surf. Coat. Technol. 205 S1Google Scholar

    [30]

    André A, Joakim A, Arutiun E 2007 J. Appl. Phys. 102 113303Google Scholar

    [31]

    Brenning N, Axnas I, Raadu M A, Lundin D, Helmerson U 2008 Plasma Sources Sci. Technol. 17 045009Google Scholar

    [32]

    Ku V P T, Annaratone B M, Allen J E 1998 J. Appl. Phys. 84 6536Google Scholar

    [33]

    Bohlmark J, Alami J, Christou C 2005 J. Vac. Sci. Technol. A 23 18Google Scholar

    [34]

    Horwat D, Anders A 2008 J. Phys. D: Appl. Phys. 41 135210Google Scholar

    [35]

    林浩 2014 硕士学位论文 (西安: 西安电子科技大学)

    Lin H 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [36]

    吴忠振, 田修波, 李春伟, 傅劲裕, 潘锋, 朱剑豪 2014 63 175201Google Scholar

    Wu Z Z, Tian X B, Li C W, Fu R K Y, Pan F, Chu P K 2014 Acta Phys. Sin. 63 175201Google Scholar

    [37]

    Yushkov G Y, Anders A 2010 IEEE Trans. Plasma Sci. 38 3028Google Scholar

    [38]

    Ehiasarian A P, Vetushka A, Hecimovic A 2008 J. Appl. Phys. 104 267Google Scholar

    [39]

    吴保华, 冷永祥, 黄楠, 杨文茂, 李雪源 2018 表面技术 47 245Google Scholar

    Wu B H, Leng Y X, Huang N, Yang W M, Li X Y 2018 Surf. Technol. 47 245Google Scholar

  • [1] Gao Jian-Ying, Li Yu-Ge, Lei Ming-Kai. Plasma characteristics in deep oscillation magnetron sputtering of chromium target. Acta Physica Sinica, 2024, 73(16): 165201. doi: 10.7498/aps.73.20240364
    [2] Xie Bing-Hong, Xu Guo-Kai, Xiao Shao-Qiu, Yu Zhong-Jun, Zhu Da-Li. Resonance magnetoelectric effect analysis and output power optimization of nonlinear magnetoelectric transducer model. Acta Physica Sinica, 2023, 72(11): 117501. doi: 10.7498/aps.72.20222277
    [3] Zhang Yu-Ru, Gao Fei, Wang You-Nian. Numerical investigation of low pressure inductively coupled plasma sources: A review. Acta Physica Sinica, 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [4] Li Ti-Jun, Cui Sui-Han, Liu Liang-Liang, Li Xiao-Yuan, Wu Zhong-Can, Ma Zheng-Yong, Ricky K. Y. Fu, Tian Xiu-Bo, Paul K. Chu, Wu Zhong-Zhen. Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode. Acta Physica Sinica, 2021, 70(4): 045202. doi: 10.7498/aps.70.20201540
    [5] Shen Yong-Qing, Zhang Zhi-Qiang, Liao Bin, Wu Xian-Ying, Zhang Xu, Hua Qing-Song, Bao Man-Yu. Tribocorrosion performance of Nitrogen-doped diamond like carbon coating by high power impulse magnetron sputtering technique. Acta Physica Sinica, 2020, 69(10): 108101. doi: 10.7498/aps.69.20200021
    [6] Li Yu-Han, Deng Lian-Wen, Luo Heng, He Long-Hui, He Jun, Xu Yun-Chao, Huang Sheng-Xiang. Equivalent circuit model and microwave reflection loss mechanism of double-layer spiral-ring metasurface embedded composite microwave absorber. Acta Physica Sinica, 2019, 68(9): 095201. doi: 10.7498/aps.68.20181960
    [7] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Paul K, Tan Wen-Chang, Pan Feng. Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source. Acta Physica Sinica, 2017, 66(9): 095203. doi: 10.7498/aps.66.095203
    [8] Xiao Shu, Wu Zhong-Zhen, Cui Sui-Han, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Pan Feng, Paul K Chu. Cylindric high power impulse magnetron sputtering source and its discharge characteristics. Acta Physica Sinica, 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [9] Chen Shu-Yuan, Ruan Cun-Jun, Wang Yong. Research on equivalent circuit of multi-gap output cavity for sheet beam extended-interaction klystron. Acta Physica Sinica, 2014, 63(2): 028402. doi: 10.7498/aps.63.028402
    [10] Wu Zhong-Zhen, Tian Xiu-Bo, Pan Feng, Ricky K. Y. Fu, Paul K. Chu. Enhanced discharge of high power pulsed magnetron sputtering coupling with high voltage. Acta Physica Sinica, 2014, 63(18): 185207. doi: 10.7498/aps.63.185207
    [11] Wu Zhong-Zhen, Tian Xiu-Bo, Li Chun-Wei, Ricky K. Y., Fu, Pan Feng. Phasic discharge characteristics in high power pulsed magnetron sputtering. Acta Physica Sinica, 2014, 63(17): 175201. doi: 10.7498/aps.63.175201
    [12] Wu Chao, Lü Xu-Liang, Zeng Zhao-Yang, Jia Qi. Investigation of effective EM parameter based on impedance simulation. Acta Physica Sinica, 2013, 62(5): 054101. doi: 10.7498/aps.62.054101
    [13] Zhang Xiao-Li, Lin Shu-Yu, Fu Zhi-Qiang, Wang Yong. Study on resonance frequency and equivalent circuit parameters of a thin disk in flexural vibration. Acta Physica Sinica, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [14] Hu Feng-Wei, Bao Bo-Cheng, Wu Hua-Gan, Wang Chun-Li. Equivalent circuit analysis model of charge-controlled memristor and its circuit characteristics. Acta Physica Sinica, 2013, 62(21): 218401. doi: 10.7498/aps.62.218401
    [15] Wang Xiu-Zhi, Gao Jin-Song, Xu Nian-Xi. Quick analysis of miniaturized-element frequency selective surface that loaded with lumped elements by using an equivalent circuit model. Acta Physica Sinica, 2013, 62(20): 207301. doi: 10.7498/aps.62.207301
    [16] Hu Yong-Gang, Xia Feng, Xiao Jian-Zhong, Lei Chao, Li Xiang-Dong. Microstructure evolution model of zirconia solid electrolyte based on AC impedance model analysis. Acta Physica Sinica, 2012, 61(9): 098102. doi: 10.7498/aps.61.098102
    [17] Bai Chun-Jiang, Li Jian-Qing, Hu Yu-Lu, Yang Zhong-Hai, Li Bin. Calculation of beam-wave interaction of coupled-cavity TWT using equivalent circuit model. Acta Physica Sinica, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [18] Bao Bo-Cheng, Hu Wen, Xu Jian-Ping, Liu Zhong, Zou Ling. Analysis and implementation of memristor chaotic circuit. Acta Physica Sinica, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
    [19] Li Hong-Qi. Quantization of mesoscopic quartz piezoelectric crystal equivalent circuit. Acta Physica Sinica, 2005, 54(3): 1361-1365. doi: 10.7498/aps.54.1361
    [20] WANG JUN-HONG. ANALYSIS OF THE PROPAGATING PROPERTIES OF PULSE VOLTAGE AND CURRENT ON DIPOLE AN TENNAS BY EQUIVALENT CIRCUIT METHOD. Acta Physica Sinica, 2000, 49(9): 1696-1701. doi: 10.7498/aps.49.1696
Metrics
  • Abstract views:  6625
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  03 December 2020
  • Accepted Date:  03 May 2021
  • Available Online:  07 June 2021
  • Published Online:  20 September 2021

/

返回文章
返回
Baidu
map