-
忆阻器是物理上新实现的具有记忆特性的基本二端电路元件. 根据φ-q关系式的泰勒级数形式构建了荷控忆阻器等效电路分析模型, 以三次非线性荷控忆阻器模型为例, 对不同参数条件下的荷控忆阻器进行了伏安关系、有无源性等电路特性的理论分析. 结果表明: 荷控忆阻器的伏安关系具有斜体“8”字形紧磁滞回线特性, 随其参数符号的不同, 荷控忆阻器呈现出无源性和有源性, 导致其电路特性发生相应的变化; 相比无源荷控忆阻器, 有源荷控忆阻器更适用于作为二次谐波信号产生电路使用. 制作了荷控忆阻器特性分析等效电路的实验电路, 实验测量结果很好地验证了理论分析结果.Memristor realized physically is recently a basic two-terminal circuit element with memory property. Based on Taylor series form of φ-q relationship, a charge-controlled memristor equivalent circuit analysis model is built. A charge-controlled memristor model with cubic nonlinearity is taken, as an example, to make a theoretical analysis of circuit characteristics, such as voltage-current relationship, active-passive property, and so on, of the charge-controlled memristor with different parameters. Results indicate that the voltage-current relationship of the charge-controlled memristor has an italic “8” shaped hysteresis loop characteristic, and the charge-controlled memristor shows passivity and activity accompanied with the variations of parameter symbols, resulting in the occurrence of the corresponding variations of circuit characteristics; compared with the passive memristor, the active memristor is more suitable for use as a second harmonic signal generation circuit. An experiment circuit is built based on the equivalent circuit of the charge-controlled memristor characteristic analysis, and the experimental results well verify the theoretical analysis.
-
Keywords:
- charge-controlled memristor /
- equivalent circuit /
- voltage-current relationship /
- circuit characteristics
[1] Chua L O 1971 IEEE Trans. Circuit Theory CT-18 507
[2] Chua L O 1976 Proc. IEEE 64 209
[3] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80
[4] Wang X B, Chen Y R, Xi H W, Li H, Dimitrov D 2009 IEEE Electron Device Lett. 30 294
[5] Pershin Y V, Di Ventra M 2011 Adv. Phys. 60 145
[6] Bao B C, Feng F, Dong W, Pan S H 2013 Chin. Phys. B 22 068401
[7] Joglekar Y N, Wolf S J 2009 Euro. J. Phys. 30 661
[8] Riaza 2010 IEEE Trans. Circuits Syst. II: Exp. Briefs 57 223
[9] Bao B C, Shi G D, Xu J P, Liu Z, Pan S H 2011 Sci China Ser. E-Tech. Sci. 54 2180
[10] Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 60 120502]
[11] Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502
[12] Muthuswamy B, Chua L O 2010 Int. J. Bifurc. Chaos 20 1567
[13] Yu D S, Liang Y, Chen H, Iu H H C 2013 IEEE Trans. Circuits Syst. II: Exp. Briefs 60 207
[14] Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510
[15] Bao B C, Xu J P, Liu Z 2010 Chin. Phys. Lett. 27 070504
[16] Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502
[17] Witrisal K 2009 Electron. Lett. 45 713
[18] Li Z W, Liu H J, Xu X 2013 Acta Phys. Sin. 62 096401 (in Chinese) [李智炜, 刘海军, 徐欣 2013 62 096401]
[19] Jia L N, Huang A P, Zheng X H, Xiao Z S 2012 Acta Phys. Sin. 61 217306 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松 2012 61 217306]
[20] Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502
[21] Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717
[22] Zhang X, Zhou Y Z, Bi Q, Yang X H, Zu Y X 2010 Acta Phys. Sin. 59 6673 (in Chinese) [张旭, 周玉泽, 闭强, 杨兴华, 俎云霄 2010 59 6673]
[23] Song D H, L M F, Ren X, Li M M, Zu Y X 2012 Acta Phys. Sin. 61 118101 (in Chinese) [宋德华, 吕梦菲, 任翔, 李萌萌, 俎云霄 2012 61 118101]
[24] Biolková V, Kolka Z, Biolek Z, Biolek D 2010 Proc. of the European Conf. of Circuits Technology and Devices (ECCTD’10) Tenerife, Spain, 2010 p261
-
[1] Chua L O 1971 IEEE Trans. Circuit Theory CT-18 507
[2] Chua L O 1976 Proc. IEEE 64 209
[3] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80
[4] Wang X B, Chen Y R, Xi H W, Li H, Dimitrov D 2009 IEEE Electron Device Lett. 30 294
[5] Pershin Y V, Di Ventra M 2011 Adv. Phys. 60 145
[6] Bao B C, Feng F, Dong W, Pan S H 2013 Chin. Phys. B 22 068401
[7] Joglekar Y N, Wolf S J 2009 Euro. J. Phys. 30 661
[8] Riaza 2010 IEEE Trans. Circuits Syst. II: Exp. Briefs 57 223
[9] Bao B C, Shi G D, Xu J P, Liu Z, Pan S H 2011 Sci China Ser. E-Tech. Sci. 54 2180
[10] Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 60 120502]
[11] Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502
[12] Muthuswamy B, Chua L O 2010 Int. J. Bifurc. Chaos 20 1567
[13] Yu D S, Liang Y, Chen H, Iu H H C 2013 IEEE Trans. Circuits Syst. II: Exp. Briefs 60 207
[14] Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510
[15] Bao B C, Xu J P, Liu Z 2010 Chin. Phys. Lett. 27 070504
[16] Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502
[17] Witrisal K 2009 Electron. Lett. 45 713
[18] Li Z W, Liu H J, Xu X 2013 Acta Phys. Sin. 62 096401 (in Chinese) [李智炜, 刘海军, 徐欣 2013 62 096401]
[19] Jia L N, Huang A P, Zheng X H, Xiao Z S 2012 Acta Phys. Sin. 61 217306 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松 2012 61 217306]
[20] Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502
[21] Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717
[22] Zhang X, Zhou Y Z, Bi Q, Yang X H, Zu Y X 2010 Acta Phys. Sin. 59 6673 (in Chinese) [张旭, 周玉泽, 闭强, 杨兴华, 俎云霄 2010 59 6673]
[23] Song D H, L M F, Ren X, Li M M, Zu Y X 2012 Acta Phys. Sin. 61 118101 (in Chinese) [宋德华, 吕梦菲, 任翔, 李萌萌, 俎云霄 2012 61 118101]
[24] Biolková V, Kolka Z, Biolek Z, Biolek D 2010 Proc. of the European Conf. of Circuits Technology and Devices (ECCTD’10) Tenerife, Spain, 2010 p261
计量
- 文章访问数: 8752
- PDF下载量: 1190
- 被引次数: 0