Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Atomic spin and phonon coupling mechanism of nitrogen-vacancy center

Shen Xiang Zhao Li-Ye Huang Pu Kong Xi Ji Lu-Min

Citation:

Atomic spin and phonon coupling mechanism of nitrogen-vacancy center

Shen Xiang, Zhao Li-Ye, Huang Pu, Kong Xi, Ji Lu-Min
PDF
HTML
Get Citation
  • The nitrogen-vacancy center structure of diamond has attracted widespread attention due to its high sensitivity in quantum precision measurement. In this paper, a coupled phonon field is used to resonantly regulate the atomic spins of the nitrogen-vacancy center for improving the spin transition efficiency. Firstly, the interaction between phonons and lattice energy is analyzed based on the relationship between the wave function and the lattice displacement vector. The spin transition mechanism is investigated based on phonon resonance regulation, and the strain-induced energy transferable phonon-spin interaction coupling excitation model is established. Secondly, the coefficient matrix satisfying Bloch’s theorem is adopted to develop the phonon spectrum model of the first Brillouin zone characteristic region for different axial nitrogen-vacancy centers. Considering the thermal expansion, the thermal balance properties of phonon resonance system are analyzed and its specific heat model is studied based on the Debye model. Finally, the structure optimization model of different axial nitrogen-vacancy centers under the phonon model is built up based on the molecular dynamics simulation software CASTEP and density functional theory for first-principles research. The structural characteristics, phonon characteristics, and thermodynamic properties of nitrogen-vacancy centers are analyzed. The research results show that the evolution of phonon mode depends on the occupation of the nitrogen-vacancy center. A decrease in thermodynamic entropy accompanies the strengthening of the phonon mode. The covalent bond of diamond with nitrogen-vacancy center is weaker than that of a defect-free diamond. The thermodynamic properties of a defect-free diamond are more unstable. The primary phonon resonance frequency of diamond with nitrogen-vacancy centers are on the order of THz, and the secondary phonon resonance frequency is about in a range of 800 and 1200 MHz. A surface acoustic wave resonance mechanism with an interdigital width of 1.5 μm is designed according to the secondary resonance frequency, and its center frequency is about 930 MHz. The phonon resonance control method can effectively increase the spin transition probability of nitrogen-vacancy center under suitable phonon resonance control parameters, and thus realizing the increase of atomic spin manipulation efficiency.
      Corresponding author: Zhao Li-Ye, liyezhao@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62071118)
    [1]

    Awschalom D D, Flatté M E 2007 Nat. Phys. 3 153Google Scholar

    [2]

    Rong X, Geng J P, Shi F Z, Liu Y, Xu K B, Ma W C, Kong F, Jiang Z, Wu Y, Du J F 2015 Nat.Commun. 6 8748Google Scholar

    [3]

    Xu K B, Xie T Y, Li Z K, et al. 2017 Phys. Rev. Lett. 118 130514Google Scholar

    [4]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar

    [5]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [6]

    Wrachtrup J, Finkler A 2016 J. Magn. Reson. 269 225Google Scholar

    [7]

    Fortman B, Takahashi S 2019 J. Phys. Chem. A 123 6350Google Scholar

    [8]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 16 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 16 167601Google Scholar

    [9]

    Gustafsson M V, Aref T, Kockum A F, Ekstrom M K, Johansson G, Delsing P 2014 Science 346 207Google Scholar

    [10]

    Bayrakci S P, Keller T, Habicht K, Keimer B 2006 Science 312 5782Google Scholar

    [11]

    Yurtseven H, Akay O 2020 J.Mol.Struc. 1217 128451Google Scholar

    [12]

    Schuetz M J A, Kessler E M, Giedke G, Van dersypen L M K, Lukin M D, Cirac J I 2015 Phys. Rev. X 5 031031Google Scholar

    [13]

    Kervinen M, Rissanen I, Sillanpää M 2018 Phys. Rev. B 97 205443Google Scholar

    [14]

    Moores B A, Sletten L R, Viennot J J, Lehnert K W 2018 Phys. Rev. Lett. 120 227701Google Scholar

    [15]

    Han X, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123603Google Scholar

    [16]

    Noguchi A, Yamazaki R, Tabuchi Y, Nakamura Y 2017 Phys. Rev. Lett. 119 180505Google Scholar

    [17]

    Kepesidis K V, Bennett S D, Portolan S, Lukin M D, Rabl P 2013 Phys. Rev. B 88 064105Google Scholar

    [18]

    Pirkkalainen J M, Cho S U, Li J, Paraoanu G S, Hakonen P J, Sillanpaa M A 2013 Nature 494 211Google Scholar

    [19]

    O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697Google Scholar

    [20]

    Arute F, Arya K, et al. 2019 Nature 574 505Google Scholar

    [21]

    Soykal O O, Ruskov R, Tahan C 2011 Phys. Rev. Lett. 107 235502Google Scholar

    [22]

    Albrecht A, Retzker A, Jelezko F, Plenio M B 2013 New J. Phys. 15 083014Google Scholar

    [23]

    Bennett S D, Yao N Y, Otterbach J, Zoller P, Rabl P, Lukin M D 2013 Phys. Rev. Lett. 110 156402Google Scholar

    [24]

    Wang H, Burkard G 2015 Phys. Rev. B 92 195432Google Scholar

    [25]

    Gell J R, Ward M B, Young R J, Stevenson R M, Atkinson P, Anderson D, Jones G A C, Ritchie D A, Shields A J 2008 App. Phys. Lett. 93 081115Google Scholar

    [26]

    Couto O D D, Lazic S, Iikawa F, Stotz J A H, Jahn U, Hey R, Santos P V 2009 Nat. Photon 3 645Google Scholar

    [27]

    Metcalfe M, Carr S M, Muller A, Solomon G S, Lawall J 2010 Phys. Rev. Lett. 105 037401Google Scholar

    [28]

    McNeil R P G, Kataoka M, Ford C J B, Barnes C H W, Anderson D, Jones G A C, Farrer I, Ritchie D A 2011 Nature 477 439Google Scholar

    [29]

    Yeo I, de Assis P L, Gloppe A, Dupont-Ferrier E, Verlot P, Malik N S, Dupuy E, Claudon J, Gerard J M, Auffeves A, Nogues G, Seidelin S, Poizat J P, Arcizet O, Richard M 2014 Nat. Nanotech 9 106Google Scholar

    [30]

    Schulein F J R, Zallo E, Atkinson P, Schmidt O G, Trotta R, Rastelli A, Wixforth A, Krenner H J 2015 Nat. Nanotech. 10 512Google Scholar

    [31]

    Arcizet O, Jacques V, Siria A, Poncharal P, Vincent P, Seidelin S 2011 Nat. Phys. 7 879Google Scholar

    [32]

    Kolkowitz S, Jayich A C B, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E, Lukin M D 2012 Science 335 1603Google Scholar

    [33]

    MacQuarrie E R, Gosavi T A, Jungwirth N R, Bhave S A, Fuchs G D 2013 Phys. Rev. Lett. 111 227602Google Scholar

    [34]

    Teissier J, Barfuss A, Appel P, Neu E, Maletinsky P 2014 Phys. Rev. Lett. 113 020503Google Scholar

    [35]

    Ovartchaiyapong P, Lee K W, Myers B A, Jayich A C B 2014 Nat. Commun. 5 4429Google Scholar

    [36]

    MacQuarrie E R, Gosavi T A, Bhave S A, Fuchs G D 2015 Phys. Rev. B 92 224419Google Scholar

    [37]

    Barfuss A, Teissier J, Neu E, Nunnenkamp A, Maletinsky P 2015 Nat. Phys. 11 820Google Scholar

    [38]

    MacQuarrie E R, Gosavi T A, Moehle A M, Jungwirth N R, Bhave S A, Fuchs G D 2015 Optica 2 233Google Scholar

    [39]

    Meesala S, Sohn Y I, Atikian H A, Kim S, Burek M J, Choy J T, Loncar M 2016 Phys. Rev. Appl. 5 034010Google Scholar

    [40]

    Gao W B, Imamoglu A, Bernien H, Hanson R 2015 Nat. Photon. 9 363Google Scholar

    [41]

    Batalov A, Jacques V, Kaiser F, Siyushev P, Neumann P, Rogers L J, McMurtrie R L, Manson N B, Jelezko F, Wrachtrup J 2009 Phys. Rev. Lett. 102 195506Google Scholar

    [42]

    Maze J R, Gali A, Togan E, Chu Y, Trifonov A, Kaxiras E, Lukin M D 2011 New J. Phys. 13 025025Google Scholar

    [43]

    Doherty M W, Manson N B, Delaney P, Hollenberg L C L 2011 New J. Phys. 13 025019Google Scholar

    [44]

    Rath P, Ummethala S, Nebel C, Pernice W H P 2015 Phys. Status Solidi A 212 2385Google Scholar

    [45]

    Khanaliloo B, Jayakumar H, Hryciw A C, Lake D P, Kaviani H, Barclay P E 2015 Phys. Rev. X 5 041051Google Scholar

    [46]

    Golter D A, Oo T, Amezcua M, Stewart K A, Wang H L 2016 Phys. Rev. Lett. 116 143602Google Scholar

    [47]

    成泰民, 鲜于泽 2006 55 4828Google Scholar

    Cheng T M, Xian Y Z 2006 Acta Phys. Sin. 55 4828Google Scholar

    [48]

    Golter D A, Oo T, Amezcua M, Lekavicius I, Stewart K A, Wang H L 2016 Phys. Rev. X 6 041060Google Scholar

    [49]

    玻恩 M, 黄昆 1989 晶格动力学理论 (北京: 北京大学出版社) 第42−231页

    Born M, Huang K 1989 Lattice Dynamics Theory (Beijing: Peking University Press) pp42−231 (in Chinese)

    [50]

    蒋文灿, 陈华, 张伟斌 2016 12 126301Google Scholar

    Jiang W C, Chen H, Zhang W B 2016 Acta Phys. Sin. 12 126301Google Scholar

    [51]

    Fincham D 1994 Mol. Simul. 13 1Google Scholar

  • 图 1  NV色心几何结构和自旋跃迁性质 (a)几何结构; (b)能级结构及自旋跃迁性质

    Figure 1.  Structures and spin transition properties of a negatively charged NV center: (a) Geometric structure; (b) energy level structure and spin transition properties.

    图 2  NV色心量子化轴示意图

    Figure 2.  Schematic diagram of quantization axis for NV center

    图 3  金刚石中4个轴向NV色心分布及NV坐标系

    Figure 3.  Four axial NV center distributions and their NV coordinate systems in diamond.

    图 4  (a)声子场共振结构示意图; (b)声子场共振调控机理示意图[48]

    Figure 4.  (a) Schematic diagram of phonon field resonance structure; (b) mechanism diagram of phonon field resonance control.

    图 5  金刚石第一布里渊区特征 (a)不含NV色心; (b)含NV色心

    Figure 5.  Characteristics of first Brillouin zone of diamond: (a) Without NV center; (b) contain NV center.

    图 6  不同轴向NV色心金刚石的晶格能优化特征

    Figure 6.  Lattice energy optimization characteristics for the diamond with NV centers of different axes.

    图 7  不同轴向NV色心金刚石的带隙特征 (a)无NV色心; (b) [1, 1, 1]轴向; (c) [1, –1, –1]轴向; (d) [–1, 1, –1]轴向; (e) [–1, –1, 1]轴向

    Figure 7.  Band gap characteristics for the diamond with NV centers of different axes: (a) Without NV center; (b) axis direction of [1, 1, 1]; (c) axis direction of [1, –1, –1]; (d) axis direction of [–1, 1, –1]; (e) axis direction of [–1, –1, 1].

    图 8  不同轴向NV色心金刚石的态密度曲线

    Figure 8.  State density curves of the diamond with NV centers of different axes.

    图 9  不同轴向NV色心金刚石的声子谱 (a)无NV色心; (b) [1, 1, 1]轴向; (c) [1, –1, –1]轴向; (d) [–1, 1, –1]轴向; (e) [–1, –1, 1]轴向

    Figure 9.  Phonon spectrum curves of the diamond with NV centers of different axes: (a) Without NV center; (b) axis direction of [1, 1, 1]; (c) axis direction of [1, –1, –1]; (d) axis direction of [–1, 1, –1]; (e) axis direction of [–1, –1, 1].

    图 10  不同轴向NV色心金刚石的声子态密度曲线

    Figure 10.  Phonon state density curves of the diamond with NV centers of different axes.

    图 11  不同轴向NV色心金刚石的Debye温度特征 (a)特征曲线; (b)特征值

    Figure 11.  Debye temperture characteristics of the diamond with NV centers of different axes: (a) Characteristic curves; (b) characteristic values.

    图 12  不同轴向NV色心金刚石的声子热力学曲线 (a)热力学晗; (b)热力学熵; (c)热力学自由能

    Figure 12.  Debye temperture curves of the diamond with NV centers of different axes: (a) Enthalpy; (b) entropy; (c) free Energy.

    图 13  不同轴向NV色心金刚石的热容特性 (a)热容曲线; (b)热容值

    Figure 13.  Heat capacity characteristics of the diamond with NV centers of different axes: (a) Heat capacity curves; (b) heat capacity values.

    表 1  不同轴向NV色心的晶格动力学矩阵元的不对称关系

    Table 1.  Asymmetrical relations of lattice dynamics matrix elements for NV centers of different axes.

    NV色心轴向晶格动力学矩阵元不对称关系 NV色心轴向晶格动力学矩阵元不对称关系
    无NV色心$\left\{ \begin{aligned}&{ {D_{xy} }\left( {{q} } \right) = {D_{yx} }\left( {{q} } \right)}\\&{ {D_{yz} }\left( {{q} } \right) = {D_{zy} }\left( {{q} } \right)}\\&{ {D_{xz} }\left( {{q} } \right) = {D_{zx} }\left( {{q} } \right)}\end{aligned} \right.$ [–1, 1, –1]轴向$\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = - {k_{[ - 1, 1, - 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = - {k_{[ - 1, 1, - 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = {k_{[ - 1, 1, - 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$
    [1, 1, 1]轴向$\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = {k_{[1, 1, 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = {k_{[1, 1, 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = {k_{[1, 1, 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$ [–1, –1, 1]轴向$\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = {k_{[ - 1, - 1, 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = - {k_{[ - 1, - 1, 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = - {k_{[ - 1, - 1, 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$
    [1, –1, –1]轴向$\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = - {k_{[1, - 1, - 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = {k_{[1, - 1, - 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = - {k_{[1, - 1, - 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$
    DownLoad: CSV

    表 2  [1, 1, 1]轴向NV色心金刚石布里渊区特征线的声子谱解析结果

    Table 2.  Phonon spectrum analysis results at the characteristic line of the Brillouin zone in the diamond with the NV center of [1, 1, 1] axis.

    特征线声子谱波矢条件声子谱函数极化向量
    Λ 线$ {{q}}_{{x}}={{q}}_{y}={{q}}_{{z}}={q} $$\left\{\begin{aligned}&{\omega }_{1}=\sqrt {{ {A} }_ {[1, 1, 1]} ^ {\varLambda } + {2}{B} _ {[1, 1, 1]} ^ {\varLambda }} \\ &{\omega }_{2}=\sqrt {{ {A} }_ {[1, 1, 1]} ^ {\varLambda } {-}{ {B} }_ {[1, 1, 1]} ^ {\varLambda } } \\ &{\omega }_{3}=\sqrt{ { {A} }_ {[1, 1, 1]} ^ {\varLambda } {-}{ {B} }_ {[1, 1, 1]} ^ {\varLambda } }\end{aligned}\right.$$ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\\ &{{e}}_{{q}{2}}=\left({-}\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}{, 0}\right)\\ &{{e}}_{{q}{3}}=\left({-}\frac{1}{\sqrt{{6}}}{, -}\frac{1}{\sqrt{{6}}}, \frac{\sqrt{{6}}}{3}\right)\end{aligned}\right. $
    $ \varDelta $线
    (ΓF 线)
    (ZQ 线)
    $ {{q}}_{{x}}={{q}}_{{z}}{=0} $$\left\{\begin{aligned}&{\omega }_{1}=\sqrt{ { {A} }_{[1, 1, 1]}^{\varDelta }+{ {B} }_{[1, 1, 1]}^{\varDelta} }\\ &{\omega }_{2}=\sqrt{ { {B} }_{[1, 1, 1]}^{\varDelta } }\\ &{\omega }_{3}=\sqrt{ { {B} }_{[1, 1, 1]}^{\varDelta} }\end{aligned}\right.$$ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left({0, 1, 0}\right)\\ &{{e}}_{{q}{2}}=\left({1, 0, 0}\right)\\ &{{e}}_{{q}{3}}=\left({0, 0, 1}\right)\end{aligned}\right. $
    Σ 线${ {q} }_{ {x} }={ {q} }_{y}={q},$
    $ {{q}}_{{z}}= 0 $
    $\left\{\begin{aligned}&{\omega }_{1}=\sqrt{ { {A} }_{ [1, 1, 1] }^{\varSigma }+{ {B} }_ {[1, 1, 1]} ^ {\varSigma } }\\ &{\omega }_{2}=\sqrt{ { {A} }_{[1, 1, 1]} ^ {\varSigma } {-}{ {B} }_{[1, 1, 1]} ^ {\varSigma } } \\ &{\omega }_{3}=\sqrt{ { {C} }_ {[1, 1, 1]} ^{\varSigma } } \end{aligned}\right.$$ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}{, 0}\right)\\ &{{e}}_{{q}{2}}=\left({-}\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}{, 0}\right)\\ &{{e}}_{{q}{3}}=\left({0, 0, 1}\right)\end{aligned}\right. $
    M 线
    (ΓZ 线)
    (FQ 线)
    $ {{q}}_{{x}}={{q}}_{y}={0} $$\left\{\begin{aligned}&{\omega }_{1}=\sqrt{ { {A} }_ {[1, 1, 1]} ^{ {M} }+{ {B} }_ {[1, 1, 1]} ^{ {M} } }\\ &{\omega }_{2}=\sqrt{ { {B} }_ {[1, 1, 1]} ^{ {M} } }\\ &{\omega }_{3}=\sqrt{ { {B} }_ {[1, 1, 1]} ^{ {M} } }\end{aligned}\right.$$ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left({0, 0, 1}\right)\\ &{{e}}_{{q}{2}}=\left({1, 0, 0}\right)\\ &{{e}}_{{q}{3}}=\left({0, 1, 0}\right)\end{aligned}\right. $
    注: $A_{[1, 1, 1]}^\varDelta = \left( {2{f_1}/3{k_{[1, 1, 1]}}M_l^\alpha } \right)\left[ {2 - 2\cos \left( {{q_y}a/2} \right)} \right]$, $B_{[1, 1, 1]}^\varDelta = \left( {2{f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\left[ {\eta - \eta \cos \left( { {q_y}a} \right)} \right]$,
    $A_{[1, 1, 1]}^\varSigma = \left( { {f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\{ 3 - 2\cos \left( {qa/2} \right) - \cos \left( {qa} \right) + \left[ {2\eta - 2\eta \cos \left( {qa} \right)} \right]\}$, $B_{[1, 1, 1]}^\varSigma = \left( { {f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\left[ {1 - \cos \left( {qa} \right)} \right]$,
    $C_{[1, 1, 1]}^\varSigma = \left( {2{f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\left[ {2 - 2\cos \left( {qa/2} \right)} \right]$, $A_{[1, 1, 1]}^M = \left( {2{f_1}/3{k_{[1, 1, 1]}}M_l^\alpha } \right)\left[ {2 - 2\cos \left( {{q_z}a/2} \right)} \right]$,
    $B_{[1, 1, 1]}^M = \left( {2{f_1}/3{k_{[1, 1, 1]}}M_l^\alpha } \right)\left[ {\eta - \eta \cos \left( {{q_z}a} \right)} \right]$.
    DownLoad: CSV

    表 3  [1, 1, 1]轴向NV色心金刚石的声子热平衡温度解析结果

    Table 3.  Phonon thermal equilibrium temperature analysis results of the diamond with the NV center of [1, 1, 1] axis.

    声子极化方向声子热平衡温度声子极化方向声子热平衡温度
    $ {\varLambda } $线方向${T}_{ {\varLambda } }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{ {\varLambda } }+{ {2}{B} }_{ {[1, 1, 1]} }^{ {\varLambda } } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$$ {\varSigma } $线方向${T}_{ {\varSigma } }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{ {\varSigma } }+{ {B} }_{ {[1, 1, 1]} }^{ {\varSigma } } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$
    $ \varDelta $线方向${T}_{\varDelta }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{\varDelta }+{ {B} }_{ {[1, 1, 1]} }^{\varDelta } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$M 线方向${T}_{ {M} }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{ {M} }+{ {B} }_{ {[1, 1, 1]} }^{ {M} } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$
    注: 参数$ {{A}}_{{[1, 1, 1]}}^{{\varLambda }}, {{B}}_{{[1, 1, 1]}}^{{\varLambda }}, {{A}}_{{[1, 1, 1]}}^{\varDelta }, {{B}}_{{[1, 1, 1]}}^{\varDelta } $, $ {{A}}_{{[1, 1, 1]}}^{{\varSigma }}, {{B}}_{{[1, 1, 1]}}^{{\varSigma }}, {{A}}_{{[1, 1, 1]}}^{{M}} $和$ {{B}}_{{[1, 1, 1]}}^{{M}} $同表2.
    DownLoad: CSV
    Baidu
  • [1]

    Awschalom D D, Flatté M E 2007 Nat. Phys. 3 153Google Scholar

    [2]

    Rong X, Geng J P, Shi F Z, Liu Y, Xu K B, Ma W C, Kong F, Jiang Z, Wu Y, Du J F 2015 Nat.Commun. 6 8748Google Scholar

    [3]

    Xu K B, Xie T Y, Li Z K, et al. 2017 Phys. Rev. Lett. 118 130514Google Scholar

    [4]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar

    [5]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [6]

    Wrachtrup J, Finkler A 2016 J. Magn. Reson. 269 225Google Scholar

    [7]

    Fortman B, Takahashi S 2019 J. Phys. Chem. A 123 6350Google Scholar

    [8]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 16 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 16 167601Google Scholar

    [9]

    Gustafsson M V, Aref T, Kockum A F, Ekstrom M K, Johansson G, Delsing P 2014 Science 346 207Google Scholar

    [10]

    Bayrakci S P, Keller T, Habicht K, Keimer B 2006 Science 312 5782Google Scholar

    [11]

    Yurtseven H, Akay O 2020 J.Mol.Struc. 1217 128451Google Scholar

    [12]

    Schuetz M J A, Kessler E M, Giedke G, Van dersypen L M K, Lukin M D, Cirac J I 2015 Phys. Rev. X 5 031031Google Scholar

    [13]

    Kervinen M, Rissanen I, Sillanpää M 2018 Phys. Rev. B 97 205443Google Scholar

    [14]

    Moores B A, Sletten L R, Viennot J J, Lehnert K W 2018 Phys. Rev. Lett. 120 227701Google Scholar

    [15]

    Han X, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123603Google Scholar

    [16]

    Noguchi A, Yamazaki R, Tabuchi Y, Nakamura Y 2017 Phys. Rev. Lett. 119 180505Google Scholar

    [17]

    Kepesidis K V, Bennett S D, Portolan S, Lukin M D, Rabl P 2013 Phys. Rev. B 88 064105Google Scholar

    [18]

    Pirkkalainen J M, Cho S U, Li J, Paraoanu G S, Hakonen P J, Sillanpaa M A 2013 Nature 494 211Google Scholar

    [19]

    O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697Google Scholar

    [20]

    Arute F, Arya K, et al. 2019 Nature 574 505Google Scholar

    [21]

    Soykal O O, Ruskov R, Tahan C 2011 Phys. Rev. Lett. 107 235502Google Scholar

    [22]

    Albrecht A, Retzker A, Jelezko F, Plenio M B 2013 New J. Phys. 15 083014Google Scholar

    [23]

    Bennett S D, Yao N Y, Otterbach J, Zoller P, Rabl P, Lukin M D 2013 Phys. Rev. Lett. 110 156402Google Scholar

    [24]

    Wang H, Burkard G 2015 Phys. Rev. B 92 195432Google Scholar

    [25]

    Gell J R, Ward M B, Young R J, Stevenson R M, Atkinson P, Anderson D, Jones G A C, Ritchie D A, Shields A J 2008 App. Phys. Lett. 93 081115Google Scholar

    [26]

    Couto O D D, Lazic S, Iikawa F, Stotz J A H, Jahn U, Hey R, Santos P V 2009 Nat. Photon 3 645Google Scholar

    [27]

    Metcalfe M, Carr S M, Muller A, Solomon G S, Lawall J 2010 Phys. Rev. Lett. 105 037401Google Scholar

    [28]

    McNeil R P G, Kataoka M, Ford C J B, Barnes C H W, Anderson D, Jones G A C, Farrer I, Ritchie D A 2011 Nature 477 439Google Scholar

    [29]

    Yeo I, de Assis P L, Gloppe A, Dupont-Ferrier E, Verlot P, Malik N S, Dupuy E, Claudon J, Gerard J M, Auffeves A, Nogues G, Seidelin S, Poizat J P, Arcizet O, Richard M 2014 Nat. Nanotech 9 106Google Scholar

    [30]

    Schulein F J R, Zallo E, Atkinson P, Schmidt O G, Trotta R, Rastelli A, Wixforth A, Krenner H J 2015 Nat. Nanotech. 10 512Google Scholar

    [31]

    Arcizet O, Jacques V, Siria A, Poncharal P, Vincent P, Seidelin S 2011 Nat. Phys. 7 879Google Scholar

    [32]

    Kolkowitz S, Jayich A C B, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E, Lukin M D 2012 Science 335 1603Google Scholar

    [33]

    MacQuarrie E R, Gosavi T A, Jungwirth N R, Bhave S A, Fuchs G D 2013 Phys. Rev. Lett. 111 227602Google Scholar

    [34]

    Teissier J, Barfuss A, Appel P, Neu E, Maletinsky P 2014 Phys. Rev. Lett. 113 020503Google Scholar

    [35]

    Ovartchaiyapong P, Lee K W, Myers B A, Jayich A C B 2014 Nat. Commun. 5 4429Google Scholar

    [36]

    MacQuarrie E R, Gosavi T A, Bhave S A, Fuchs G D 2015 Phys. Rev. B 92 224419Google Scholar

    [37]

    Barfuss A, Teissier J, Neu E, Nunnenkamp A, Maletinsky P 2015 Nat. Phys. 11 820Google Scholar

    [38]

    MacQuarrie E R, Gosavi T A, Moehle A M, Jungwirth N R, Bhave S A, Fuchs G D 2015 Optica 2 233Google Scholar

    [39]

    Meesala S, Sohn Y I, Atikian H A, Kim S, Burek M J, Choy J T, Loncar M 2016 Phys. Rev. Appl. 5 034010Google Scholar

    [40]

    Gao W B, Imamoglu A, Bernien H, Hanson R 2015 Nat. Photon. 9 363Google Scholar

    [41]

    Batalov A, Jacques V, Kaiser F, Siyushev P, Neumann P, Rogers L J, McMurtrie R L, Manson N B, Jelezko F, Wrachtrup J 2009 Phys. Rev. Lett. 102 195506Google Scholar

    [42]

    Maze J R, Gali A, Togan E, Chu Y, Trifonov A, Kaxiras E, Lukin M D 2011 New J. Phys. 13 025025Google Scholar

    [43]

    Doherty M W, Manson N B, Delaney P, Hollenberg L C L 2011 New J. Phys. 13 025019Google Scholar

    [44]

    Rath P, Ummethala S, Nebel C, Pernice W H P 2015 Phys. Status Solidi A 212 2385Google Scholar

    [45]

    Khanaliloo B, Jayakumar H, Hryciw A C, Lake D P, Kaviani H, Barclay P E 2015 Phys. Rev. X 5 041051Google Scholar

    [46]

    Golter D A, Oo T, Amezcua M, Stewart K A, Wang H L 2016 Phys. Rev. Lett. 116 143602Google Scholar

    [47]

    成泰民, 鲜于泽 2006 55 4828Google Scholar

    Cheng T M, Xian Y Z 2006 Acta Phys. Sin. 55 4828Google Scholar

    [48]

    Golter D A, Oo T, Amezcua M, Lekavicius I, Stewart K A, Wang H L 2016 Phys. Rev. X 6 041060Google Scholar

    [49]

    玻恩 M, 黄昆 1989 晶格动力学理论 (北京: 北京大学出版社) 第42−231页

    Born M, Huang K 1989 Lattice Dynamics Theory (Beijing: Peking University Press) pp42−231 (in Chinese)

    [50]

    蒋文灿, 陈华, 张伟斌 2016 12 126301Google Scholar

    Jiang W C, Chen H, Zhang W B 2016 Acta Phys. Sin. 12 126301Google Scholar

    [51]

    Fincham D 1994 Mol. Simul. 13 1Google Scholar

  • [1] Tan Cong, Wang Deng-Long, Dong Yao-Yong, Ding Jian-Wen. Storage and retrieval of solitons in electromagnetically induced transparent system of V-type three-level diamond nitrogen-vacancy color centers. Acta Physica Sinica, 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [2] Shen Yuan-Yuan, Wang Bo, Ke Dong-Qian, Zheng Dou-Dou, Li Zhong-Hao, Wen Huan-Fei, Guo Hao, Li Xin, Tang Jun, Ma Zong-Min, Li Yan-Jun, Igor Vladimirovich Yaminsky, Liu Jun. High-frequency resolution diamond nitrogen-vacancy center wide-spectrum imaging technology. Acta Physica Sinica, 2024, 73(6): 067601. doi: 10.7498/aps.73.20231833
    [3] Li Jun-Peng, Ren Ze-Yang, Zhang Jin-Feng, Wang Han-Xue, Ma Yuan-Chen, Fei Yi-Fan, Huang Si-Yuan, Ding Sen-Chuan, Zhang Jin-Cheng, Hao Yue. Formation mechanism and regulation of silicon vacancy centers in polycrystalline diamond films. Acta Physica Sinica, 2023, 72(3): 038102. doi: 10.7498/aps.72.20221437
    [4] He Jian, Jia Yan-Wei, Tu Ju-Ping, Xia Tian, Zhu Xiao-Hua, Huang Ke, An Kang, Liu Jin-Long, Chen Liang-Xian, Wei Jun-Jun, Li Cheng-Ming. Generation of shallow nitrogen-vacancy centers in diamond with carbon ion implantation. Acta Physica Sinica, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [5] Yang Zhi-Ping, Kong Xi, Shi Fa-Zhan, Du Jiang-Feng. Phase transition observation of nanoscale water on diamond surface. Acta Physica Sinica, 2022, 71(6): 067601. doi: 10.7498/aps.71.20211348
    [6] An Meng, Sun Xu-Hui, Chen Dong-Sheng, Yang Nuo. Research progress of thermal transport in graphene-based thermal interfacial composite materials. Acta Physica Sinica, 2022, 71(16): 166501. doi: 10.7498/aps.71.20220306
    [7] Lin Hao-Bin, Zhang Shao-Chun, Dong Yang, Zheng Yu, Chen Xiang-Dong, Sun Fang-Wen. Temperature sensing with nitrogen vacancy center in diamond. Acta Physica Sinica, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [8] Wu Jian-Dong,  Cheng Zhi,  Ye Xiang-Yu,  Li Zhao-Kai,  Wang Peng-Fei,  Tian Chang-Lin,  Cheng Hong-Wei. Coherent electrical control of a single electron spin in diamond nitrogen-vacancy centers. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [9] Wu Jian-Dong, Cheng Zhi, Ye Xiang-Yu, Li Zhao-Kai, Wang Peng-Fei, Tian Chang-Lin, Chen Hong-Wei. Coherent electrical control of single electron spin in diamond nitrogen-vacancy center. Acta Physica Sinica, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [10] Phase Transition Observation of Nanoscale Water on Diamond Surface. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211348
    [11] Zhao Peng-Ju, Kong Fei, Li Rui, Shi Fa-Zhan, Du Jiang-Feng. Nanoscale zero-field detection based on single solid-state spins in diamond. Acta Physica Sinica, 2021, 70(21): 213301. doi: 10.7498/aps.70.20211363
    [12] Feng Yuan-Yao, Li Zhong-Hao, Zhang Yang, Cui Ling-Xiao, Guo Qi, Guo Hao, Wen Huan-Fei, Liu Wen-Yao, Tang Jun, Liu Jun. Optimization of optical control of nitrogen vacancy centers in solid diamond. Acta Physica Sinica, 2020, 69(14): 147601. doi: 10.7498/aps.69.20200072
    [13] Liu Gang-Qin, Xing Jian, Pan Xin-Yu. Quantum control of nitrogen-vacancy center in diamond. Acta Physica Sinica, 2018, 67(12): 120302. doi: 10.7498/aps.67.20180755
    [14] Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun. Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Acta Physica Sinica, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [15] Liao Qing-Hong, Ye Yang, Li Hong-Zhen, Zhou Nan-Run. Quadrature squeezing of the system consisting of nitrogen-vacancy centers in diamond coupled to cavity field and mechanical resonator. Acta Physica Sinica, 2018, 67(4): 040302. doi: 10.7498/aps.67.20172170
    [16] Peng Shijie, Liu Ying, Ma Wenchao, Shi Fazhan, Du Jiangfeng. High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [17] Dong Yang, Du Bo, Zhang Shao-Chun, Chen Xiang-Dong, Sun Fang-Wen. Solid quantum sensor based on nitrogen-vacancy center in diamond. Acta Physica Sinica, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [18] Li Lu-Si, Li Hong-Hui, Zhou Li-Li, Yang Zhi-Sheng, Ai Qing. Measurement of weak static magnetic field with nitrogen-vacancy color center. Acta Physica Sinica, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [19] Liu Dong-Qi, Chang Yan-Chun, Liu Gang-Qin, Pan Xin-Yu. Electron spin studies of nitrogen vacancy centers in nanodiamonds. Acta Physica Sinica, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [20] ZHU YAN-QING, WANG ZHI-QIANG. INFLUENCE OF PHONON-MAGNON COUPLING ON THE INFRARED ABSORPTION IN ANTIFERROMAGNETS. Acta Physica Sinica, 1966, 22(3): 360-370. doi: 10.7498/aps.22.360
Metrics
  • Abstract views:  7809
  • PDF Downloads:  296
  • Cited By: 0
Publishing process
  • Received Date:  04 November 2020
  • Accepted Date:  19 December 2020
  • Available Online:  10 March 2021
  • Published Online:  20 March 2021

/

返回文章
返回
Baidu
map