Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of weak static magnetic field with nitrogen-vacancy color center

Li Lu-Si Li Hong-Hui Zhou Li-Li Yang Zhi-Sheng Ai Qing

Citation:

Measurement of weak static magnetic field with nitrogen-vacancy color center

Li Lu-Si, Li Hong-Hui, Zhou Li-Li, Yang Zhi-Sheng, Ai Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The accurate measurement of the weak geomagnetic field is of significance for different disciplines. It can provide sufficient navigation information for both human beings and different natural animal species. Inspired by avian magnetoreception models, we consider the feasibility of utilizing quantum coherence phenomena to measure weak static magnetic fields. We propose an experimentally feasible scheme to measure weak static magnetic fields with nitrogen-vacancy color center in diamond. Nitrogen-vacancy color centers are regarded as an ideal platform to study quantum science as a result of its long coherence time up to a millisecond timescale at room temperature. In a high-purity diamond, the hyperfine interaction with the surrounding 13C nuclear spins dominates the decoherence process. In this paper, by the cluster-correlation expansion, we numerically simulate the decoherence process between|0⟩ ightangle and|+1⟩ ightangle states of the individual nitrogen-vacancy color center electron spin in the 13C nuclear-spin baths with various magnitudes of external magnetic fields. By applying the Hahn echo pulse sequence to the system, we obtain the coherence of the nitrogen-vacancy color center electron spin as a function of total evolution time and magnetic field. Furthermore, we obtain the high-accuracy relationship between the three decoherence-characteristic timescales, i.e., TW, TR, T2, and magnetic field B. Finally, we draw a conclusion that TR has the highest sensitivity to the magnetic field in the three timescales. Thus, for a certain nitrogen-vacancy color center, TR can be the scale for the magnitude of the magnetic field, or rather, the component along the nitrogen-vacancy electronic spin axis. When measuring an unknown magnetic field, we adjust the nitrogen-vacancy axis to the three mutually orthogonal directions respectively. By this means, we obtain the three components of the magnetic field and thus the magnitude and direction of the actual magnetic field. The accuracy can reach as high as 60 nT·Hz-1/2, and can be further improved by using an ensemble of nitrogen-vacancy color centers or diamond crystals purified with 12C atoms. In summary, our scheme may provide an alternative method of accurately measuring the weak geomagnetic field by the nitrogen-vacancy color center under ambient condition.
      Corresponding author: Ai Qing, aiqing@bnu.edu.cn
    • Funds: Project supported by the Undergraduate Research Foundation of Beijing Normal University, China, the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11505007), and the Open Research Fund of the State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, China (Grant No. KF201502).
    [1]

    Kirtley J R 2010 Rep. Prog. Phys. 73 126501

    [2]

    Lenz J, Edelstein S 2006 IEEE Sens. J. 6 631

    [3]

    Oukhanski N, Stolz R, Zakosarenko V, Meyer H G 2002 Physica C 368 166

    [4]

    Zhang X C, Zhao G P, Xia J 2013 Acta Phys. Sin. 62 218702 (in Chinese)[张溪超, 赵国平, 夏静 2013 62 218702]

    [5]

    Phillips J B, Deutschlander M E, Freake M J, Borland S C 2001 J. Exp. Biol. 204 2543

    [6]

    Liang C H, Chuang C L, Jiang J A, Yang E C 2016 Sci. Rep. 6 23657

    [7]

    Cai C Y, Ai Q, Quan H T, Sun C P 2012 Phys. Rev. A 85 022315

    [8]

    Rodgers C T, Hore P J 2009 Proc. Natl. Acad. Sci. USA 106 353

    [9]

    Kominis I K 2009 Phys. Rev. E 80 056115

    [10]

    Cai J M, Guerreschi G G, Briegel H J 2010 Phys. Rev. Lett. 104 220502

    [11]

    Yang L P, Ai Q, Sun C P 2012 Phys. Rev. A 85 032707

    [12]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1

    [13]

    Dobrovitski V V, Fuchs G D, Falk A L, Santori C, Awschalom D D 2013 Annu. Rev. Condens. Matter Phys. 4 23

    [14]

    Neumann P, Beck J, Steiner M, et al. 2010 Science 329 542

    [15]

    Liu G Q, Xing J, Ma W L, Li C H, Wang P, Po H C, Liu R B, Pan X Y 2017 Phys. Rev. Lett. 118 150504

    [16]

    Bar-Gill N, Pham L M, Jarmola A, Budker D, Walsworth R L 2013 Nat. Commun. 4 1743

    [17]

    Tao M J, Hua M, Ai Q, Deng F G 2015 Phys. Rev. A 91 062325

    [18]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O'Brien J L 2010 Nature 464 45

    [19]

    Zhao N, Honert J, Schmid B, Klas M, Isoya J, Markham M, Twitchen D, Jelezko F, Liu R B, Fedder H, Wrachtrup J 2012 Nat. Nanotech. 7 657

    [20]

    Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Gurudev-Dutt M V, Togan E, Zibrov A S, Yacoby A, Walsworth R L, Lukin M D 2008 Nature 455 644

    [21]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J 2008 Nature 455 648

    [22]

    Shi F, Zhang Q, Wang P F, Sun H B, Wang J R, Rong X, Chen M, Ju C Y, Reinhard F, Chen H W, Wrachtrup J, Wang J F, Du J F 2015 Science 347 1135

    [23]

    Zhao N, Ho S W, Liu R B 2012 Phys. Rev. B 85 115303

    [24]

    Liu D Q, Chang Y C, Liu G Q, Pan X Y 2013 Acta Phys. Sin. 62 164208 (in Chinese)[刘东奇, 常彦春, 刘刚钦, 潘新宇 2013 62 164208]

    [25]

    Huang P, Kong X, Zhao N, Shi F Z, Wang P F, Rong X, Liu R B, Du J F 2011 Nat. Commun. 2 570

    [26]

    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C 1997 Science 276 2012

    [27]

    Childress L, Taylor J M, Sørensen A S, Lukin M D 2006 Phys. Rev. Lett. 96 070504

    [28]

    Song X K, Ai Q, Qiu J, Deng F G 2016 Phys. Rev. A 93 052324

    [29]

    Yang W, Liu R B 2009 Phys. Rev. B 79 115320

    [30]

    Stanwix P L, Pham L M, Maze J R, Le Sage D, Yeung T K, Cappellaro P, Hemmer P R, Yacoby A, Lukin M D, Walsworth R L 2010 Phys. Rev. B 82 201201

    [31]

    Chen X D, Zou C L, Gong Z J, Dong C H, Guo G C, Sun F W 2015 Light-Sci. Appl. 4 1

    [32]

    Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R, Lukin M D 2008 Nat. Phys. 4 810

    [33]

    Ishikawa T, Fu K M C, Santori C, Acosta V M, Beausoleil R G, Watanabe H, Shikata S, Itoh K M 2012 Nano Lett. 12 2083

    [34]

    Zhao L, Yan T J 2013 Acta Physica Sin. 62 067702 (in Chinese)[赵龙, 颜廷君 2013 62 067702]

  • [1]

    Kirtley J R 2010 Rep. Prog. Phys. 73 126501

    [2]

    Lenz J, Edelstein S 2006 IEEE Sens. J. 6 631

    [3]

    Oukhanski N, Stolz R, Zakosarenko V, Meyer H G 2002 Physica C 368 166

    [4]

    Zhang X C, Zhao G P, Xia J 2013 Acta Phys. Sin. 62 218702 (in Chinese)[张溪超, 赵国平, 夏静 2013 62 218702]

    [5]

    Phillips J B, Deutschlander M E, Freake M J, Borland S C 2001 J. Exp. Biol. 204 2543

    [6]

    Liang C H, Chuang C L, Jiang J A, Yang E C 2016 Sci. Rep. 6 23657

    [7]

    Cai C Y, Ai Q, Quan H T, Sun C P 2012 Phys. Rev. A 85 022315

    [8]

    Rodgers C T, Hore P J 2009 Proc. Natl. Acad. Sci. USA 106 353

    [9]

    Kominis I K 2009 Phys. Rev. E 80 056115

    [10]

    Cai J M, Guerreschi G G, Briegel H J 2010 Phys. Rev. Lett. 104 220502

    [11]

    Yang L P, Ai Q, Sun C P 2012 Phys. Rev. A 85 032707

    [12]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1

    [13]

    Dobrovitski V V, Fuchs G D, Falk A L, Santori C, Awschalom D D 2013 Annu. Rev. Condens. Matter Phys. 4 23

    [14]

    Neumann P, Beck J, Steiner M, et al. 2010 Science 329 542

    [15]

    Liu G Q, Xing J, Ma W L, Li C H, Wang P, Po H C, Liu R B, Pan X Y 2017 Phys. Rev. Lett. 118 150504

    [16]

    Bar-Gill N, Pham L M, Jarmola A, Budker D, Walsworth R L 2013 Nat. Commun. 4 1743

    [17]

    Tao M J, Hua M, Ai Q, Deng F G 2015 Phys. Rev. A 91 062325

    [18]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O'Brien J L 2010 Nature 464 45

    [19]

    Zhao N, Honert J, Schmid B, Klas M, Isoya J, Markham M, Twitchen D, Jelezko F, Liu R B, Fedder H, Wrachtrup J 2012 Nat. Nanotech. 7 657

    [20]

    Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Gurudev-Dutt M V, Togan E, Zibrov A S, Yacoby A, Walsworth R L, Lukin M D 2008 Nature 455 644

    [21]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J 2008 Nature 455 648

    [22]

    Shi F, Zhang Q, Wang P F, Sun H B, Wang J R, Rong X, Chen M, Ju C Y, Reinhard F, Chen H W, Wrachtrup J, Wang J F, Du J F 2015 Science 347 1135

    [23]

    Zhao N, Ho S W, Liu R B 2012 Phys. Rev. B 85 115303

    [24]

    Liu D Q, Chang Y C, Liu G Q, Pan X Y 2013 Acta Phys. Sin. 62 164208 (in Chinese)[刘东奇, 常彦春, 刘刚钦, 潘新宇 2013 62 164208]

    [25]

    Huang P, Kong X, Zhao N, Shi F Z, Wang P F, Rong X, Liu R B, Du J F 2011 Nat. Commun. 2 570

    [26]

    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C 1997 Science 276 2012

    [27]

    Childress L, Taylor J M, Sørensen A S, Lukin M D 2006 Phys. Rev. Lett. 96 070504

    [28]

    Song X K, Ai Q, Qiu J, Deng F G 2016 Phys. Rev. A 93 052324

    [29]

    Yang W, Liu R B 2009 Phys. Rev. B 79 115320

    [30]

    Stanwix P L, Pham L M, Maze J R, Le Sage D, Yeung T K, Cappellaro P, Hemmer P R, Yacoby A, Lukin M D, Walsworth R L 2010 Phys. Rev. B 82 201201

    [31]

    Chen X D, Zou C L, Gong Z J, Dong C H, Guo G C, Sun F W 2015 Light-Sci. Appl. 4 1

    [32]

    Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R, Lukin M D 2008 Nat. Phys. 4 810

    [33]

    Ishikawa T, Fu K M C, Santori C, Acosta V M, Beausoleil R G, Watanabe H, Shikata S, Itoh K M 2012 Nano Lett. 12 2083

    [34]

    Zhao L, Yan T J 2013 Acta Physica Sin. 62 067702 (in Chinese)[赵龙, 颜廷君 2013 62 067702]

  • [1] Zhang Zhi-Da, Yi Kang-Yuan, Chen Yuan-Zhen, Yan Fei. Dynamic decoupling for multi-level systems. Acta Physica Sinica, 2023, 72(10): 100305. doi: 10.7498/aps.72.20222398
    [2] Lin Hao-Bin, Zhang Shao-Chun, Dong Yang, Zheng Yu, Chen Xiang-Dong, Sun Fang-Wen. Temperature sensing with nitrogen vacancy center in diamond. Acta Physica Sinica, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [3] Wu Jian-Dong,  Cheng Zhi,  Ye Xiang-Yu,  Li Zhao-Kai,  Wang Peng-Fei,  Tian Chang-Lin,  Cheng Hong-Wei. Coherent electrical control of a single electron spin in diamond nitrogen-vacancy centers. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [4] Wu Jian-Dong, Cheng Zhi, Ye Xiang-Yu, Li Zhao-Kai, Wang Peng-Fei, Tian Chang-Lin, Chen Hong-Wei. Coherent electrical control of single electron spin in diamond nitrogen-vacancy center. Acta Physica Sinica, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [5] Li Ting-Wei, Rong Xing, Du Jiang-Feng. Recent progress of quantum control in solid-state single-spin systems. Acta Physica Sinica, 2022, 71(6): 060304. doi: 10.7498/aps.71.20211808
    [6] Feng Yuan-Yao, Li Zhong-Hao, Zhang Yang, Cui Ling-Xiao, Guo Qi, Guo Hao, Wen Huan-Fei, Liu Wen-Yao, Tang Jun, Liu Jun. Optimization of optical control of nitrogen vacancy centers in solid diamond. Acta Physica Sinica, 2020, 69(14): 147601. doi: 10.7498/aps.69.20200072
    [7] Gong Long-Yan, Yang Hui, Zhao Sheng-Mei. Influence of intermediated measurements on quantum statistical complexity of single driven qubit. Acta Physica Sinica, 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [8] Bai Xu-Fang, Chen Lei. Magnetopolaron-state lifetime and qubit decoherence in donor-center quantum dots with the electromagnetic field. Acta Physica Sinica, 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [9] Yan Jie, Wei Miao-Miao, Xing Yan-Xia. Dephasing effect of quantum spin topological states in HgTe/CdTe quantum well. Acta Physica Sinica, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [10] Peng Shijie, Liu Ying, Ma Wenchao, Shi Fazhan, Du Jiangfeng. High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [11] Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun. Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Acta Physica Sinica, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [12] Ren Yi-Chong, Fan Hong-Yi. Solving the qubit coupled with reservoir under time-varying external field with Ket-Bra Entangled State Method. Acta Physica Sinica, 2016, 65(11): 110301. doi: 10.7498/aps.65.110301
    [13] Chang Feng, Wang Xiao-Qian, Gai Yong-Jie, Yan Dong, Song Li-Jun. Quantum Fisher information and spin squeezing in the interaction system of light and matter. Acta Physica Sinica, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [14] Liu Dong-Qi, Chang Yan-Chun, Liu Gang-Qin, Pan Xin-Yu. Electron spin studies of nitrogen vacancy centers in nanodiamonds. Acta Physica Sinica, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [15] Dang Wen-Jia, Zeng Xiao-Dong, Feng Zhe-Jun. Decoherence effect of target roughness in synthetic aperture ladar. Acta Physica Sinica, 2013, 62(2): 024204. doi: 10.7498/aps.62.024204
    [16] Zhang Hao-Liang, Jia Fang, Xu Xue-Xiang, Guo Qin, Tao Xiang-Yang, Hu Li-Yun. Decoherence of a photon-subtraction-addition coherent state in a thermal environment. Acta Physica Sinica, 2013, 62(1): 014208. doi: 10.7498/aps.62.014208
    [17] Zhao Hu, Li Tie-Fu, Liu Jian-She, Chen Wei. Progress of electromagnetically induced transparency based on superconducting qubits. Acta Physica Sinica, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [18] Zhao Wen-Lei, Wang Jian-Zhong, Dou Fu-Quan. Decoherence by a classically small influence. Acta Physica Sinica, 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [19] Liu Shao-Ding, Cheng Mu-Tian, Zhou Hui-Jun, Li Yao-Yi, Wang Qu-Quan, Xue Qi-Kun. The effect of biexciton, wetting layer leakage and Auger capture on Rabi oscillation damping in quantum dots. Acta Physica Sinica, 2006, 55(5): 2122-2127. doi: 10.7498/aps.55.2122
    [20] Wang Li, Hu Xiang-Ming. Coupling field linewidth: inhibiting electromagnetically induced absorption. Acta Physica Sinica, 2004, 53(8): 2551-2555. doi: 10.7498/aps.53.2551
Metrics
  • Abstract views:  8088
  • PDF Downloads:  384
  • Cited By: 0
Publishing process
  • Received Date:  28 May 2017
  • Accepted Date:  12 August 2017
  • Published Online:  05 December 2017

/

返回文章
返回
Baidu
map