搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠

李雪琴 赵云芳 唐艳妮 杨卫军

引用本文:
Citation:

基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠

李雪琴, 赵云芳, 唐艳妮, 杨卫军

Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits

Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun
PDF
导出引用
  • 量子纠缠是实现量子计算和量子通信的核心基础,本文提出了在金刚石氮-空位色心(NV centers)自旋系综与超导量子电路耦合的混合系统中实现两个分离量子节点之间纠缠的理论方案.在该混合系统中,把金刚石NV centers自旋系综和与之耦合的超导共面谐振器视为一个量子节点,两个量子节点之间通过一个空的超导共面谐振器连接.具有较长相干时间的NV centers自旋系综作为一个量子存储器,用于制备、存储和发送量子信息;易于外部操控的超导量子电路可执行量子逻辑门操作,快速调控量子信息.为了实现两个分离量子节点之间的纠缠,首先对系统的哈密顿量进行正则变换,将其等价为两个NV centers自旋系综与同一个超导共面谐振器之间的JC耦合;然后采用NV centers自旋-光子混合比特编码的方式,通过调节超导共面谐振器的谐振频率,精确控制体系演化时间,高保真度地实现了两个分离量子节点之间的量子纠缠.本方案还可以进一步扩展和集成,用于构建多节点纠缠的分布式量子网络.
    Quantum entanglement is a kernel of quantum computation and quantum communication. We introduce a theoretical scheme to achieve the entanglement between two separated quantum nodes in a hybrid system. The proposed hybrid system based on diamond nitrogen-vacancy (NV) center spin ensemble is coherently coupled to a superconducting quantum circuit consisting of two quantum nodes and a quantum channel. Each node in our setup is composed of an NV center spin ensemble magnetically coupled to a superconducting coplanar resonator. The NV center spin ensemble composed of N identical and non-interacting NV spins, is placed in the magnetic field antinode of the superconducting coplanar resonator where the coupling is maximized. An array of superconducting quantum interference devices (SQUIDs) is inserted in the central conductor of resonator to make its frequency tunable with the magnetic flux threading through the SQUID loops. This flux is generated by passing current through an on-chip wire, so that the resonator can be brought in resonance with the NV center spins without changing their Zeeman splitting. Quantum qubits encoded into two separate nodes are connected by a vacuum superconducting coplanar resonator that is used as a quantum channel. This setup can potentially take the best elements of each individual system:NV center spin ensemble with longer coherence time capable of preparing, storing and releasing photonic quantum information, and the superconducting quantum circuits are easy to manipulate externally and can perform quantum logic gates to control quantum information rapidly. In order to realize the entanglement between two separated quantum nodes, firstly, we make a canonical transformation and obtain the Hamiltonian of the system that is reduced to two NV center spin ensembles resonantly coupled to a single mode of the superconducting coplanar resonator. Then we put forward the hybrid NV center spin-photon qubit encoding. In this hybrid encoding, the NV center spin and photon degrees of freedom enter on an equal footing into the definition of the qubit, in which case, quantum channel will switch on when three superconducting coplanar resonators are in resonance with each other, and all the manipulations can perform simply by tuning the frequencies of the superconducting coplanar resonators. Under the precise control of the evolution time, high fidelity entanglement between two separated quantum nodes is achieved. We show that this proposal can provide high fidelity quantum entanglement under realistic conditions, both in the resonant and the dispersive interaction cases. This hybrid quantum system will exhibit long coherence time and possess features like easy fabrication, integratability, and potential scalability. Furthermore, the quantum node composed of an NV center spin ensemble magnetically coupled to a superconducting coplanar resonator can be respectively integrated, which has practical applications in the realization of quantum information transmission and quantum entanglement among multiple quantum nodes.
      通信作者: 李雪琴, lixueqinvt@sina.com
      Corresponding author: Li Xue-Qin, lixueqinvt@sina.com
    [1]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, OBrien J L 2010 Nature 464 45

    [2]

    Bennett C H, DiVincenzo D P 2000 Nature 404 247

    [3]

    Childress L, Gurudev Dutt M V, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281

    [4]

    Rabl P, Kolkowitz S J, Koppens F H L, Harris J G E, Zoller P, Lukin M D 2010 Nat. Phys. 6 602

    [5]

    Stoneham M 2009 Physics 2 34

    [6]

    Englund D, Shields B, Rivoire K, Hatami F, Vuovi J, Park H, Lukin M D 2010 Nano Lett. 10 3922

    [7]

    Santori C, Tamarat P, Neumann P, Wrachtrup J, Fattal D, Beausoleil R G, Rabeau J, Olivero P, Greentree A D, Prawer S, Jelezko F, Hemmer P 2006 Phys. Rev. Lett. 97 247401

    [8]

    Harrison J, Sellars M J, Manson N B 2006 Diamond and Related Materials 15 586

    [9]

    Fuchs G D, Dobrovitski V V, Toyli D M, Heremans F J, Awschalom D D 2009 Science 326 1520

    [10]

    Fuchs G D, Dobrovitski V V, Hanson R, Batra A, Weis C D, Schenkel T, Awschalom D D 2008 Phys. Rev. Lett. 101 117601

    [11]

    Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nature Materials 8 383

    [12]

    Xiao Y F, Zou C L, Li B B, Li Y, Dong C H, Han Z F, Gong Q H 2010 Phys. Rev. Lett. 105 153902

    [13]

    Kubo Y, Ong F R, Bertet P, Vion D, Jacques V, Zheng D, Drau A, Roch J F, Auffeves A, Jelezko F, Wrachtrup J, Barthe M F, Bergonzo P, Esteve D 2010 Phys. Rev. Lett. 105 140502

    [14]

    Roos C F, Lancaster G P T, Riebe M, Hffner H, Hnsel W, Gulde S, Becher C, Eschner J, Schmidt-Kaler F, Blatt R 2004 Phys. Rev. Lett. 92 220402

    [15]

    DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M, Schoelkopf R J 2009 Nature 460 240

    [16]

    Fink J M, Bianchetti R, Baur M, Gppl M, Steffen L, Filipp S, Leek P J, Blais A, Wallraff A 2009 Phys. Rev. Lett. 103 083601

    [17]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623

    [18]

    Kubo Y, Grezes C, Dewes A, Umeda T, Isoya J, Sumiya H, Morishita N, Abe H, Onoda S, Ohshima T, Jacques V, Drau A, Roch J F, Diniz I, Auffeves A, Vion D, Esteve D, Bertet P 2011 Phys. Rev. Lett. 107 220501

    [19]

    Chen Q, Yang W L, Feng M 2012 Phys. Rev. A 86 022327

    [20]

    Xiang Z L, L X Y, Li T F, You J Q, Nori F 2013 Phys. Rev. B 87 144516

    [21]

    Carretta S, Chiesa A, Troiani F, Gerace D, Amoretti G, Santini P 2013 Phys. Rev. Lett. 111 110501

    [22]

    Zou L J, Marcos D, Diehl S, Putz S, Schmiedmayer J, Majer J, Rabl P 2014 Phys. Rev. Lett. 113 023603

    [23]

    Felicetti S, Sanz M, Lamata L, Romero G, Johansson G, Delsing P, Solano E 2014 Phys. Rev. Lett. 113 093602

    [24]

    Hammerer K, Srensen A S, Polzik E S 2010 Rev. Mod. Phys. 82 1041

  • [1]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, OBrien J L 2010 Nature 464 45

    [2]

    Bennett C H, DiVincenzo D P 2000 Nature 404 247

    [3]

    Childress L, Gurudev Dutt M V, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281

    [4]

    Rabl P, Kolkowitz S J, Koppens F H L, Harris J G E, Zoller P, Lukin M D 2010 Nat. Phys. 6 602

    [5]

    Stoneham M 2009 Physics 2 34

    [6]

    Englund D, Shields B, Rivoire K, Hatami F, Vuovi J, Park H, Lukin M D 2010 Nano Lett. 10 3922

    [7]

    Santori C, Tamarat P, Neumann P, Wrachtrup J, Fattal D, Beausoleil R G, Rabeau J, Olivero P, Greentree A D, Prawer S, Jelezko F, Hemmer P 2006 Phys. Rev. Lett. 97 247401

    [8]

    Harrison J, Sellars M J, Manson N B 2006 Diamond and Related Materials 15 586

    [9]

    Fuchs G D, Dobrovitski V V, Toyli D M, Heremans F J, Awschalom D D 2009 Science 326 1520

    [10]

    Fuchs G D, Dobrovitski V V, Hanson R, Batra A, Weis C D, Schenkel T, Awschalom D D 2008 Phys. Rev. Lett. 101 117601

    [11]

    Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nature Materials 8 383

    [12]

    Xiao Y F, Zou C L, Li B B, Li Y, Dong C H, Han Z F, Gong Q H 2010 Phys. Rev. Lett. 105 153902

    [13]

    Kubo Y, Ong F R, Bertet P, Vion D, Jacques V, Zheng D, Drau A, Roch J F, Auffeves A, Jelezko F, Wrachtrup J, Barthe M F, Bergonzo P, Esteve D 2010 Phys. Rev. Lett. 105 140502

    [14]

    Roos C F, Lancaster G P T, Riebe M, Hffner H, Hnsel W, Gulde S, Becher C, Eschner J, Schmidt-Kaler F, Blatt R 2004 Phys. Rev. Lett. 92 220402

    [15]

    DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M, Schoelkopf R J 2009 Nature 460 240

    [16]

    Fink J M, Bianchetti R, Baur M, Gppl M, Steffen L, Filipp S, Leek P J, Blais A, Wallraff A 2009 Phys. Rev. Lett. 103 083601

    [17]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623

    [18]

    Kubo Y, Grezes C, Dewes A, Umeda T, Isoya J, Sumiya H, Morishita N, Abe H, Onoda S, Ohshima T, Jacques V, Drau A, Roch J F, Diniz I, Auffeves A, Vion D, Esteve D, Bertet P 2011 Phys. Rev. Lett. 107 220501

    [19]

    Chen Q, Yang W L, Feng M 2012 Phys. Rev. A 86 022327

    [20]

    Xiang Z L, L X Y, Li T F, You J Q, Nori F 2013 Phys. Rev. B 87 144516

    [21]

    Carretta S, Chiesa A, Troiani F, Gerace D, Amoretti G, Santini P 2013 Phys. Rev. Lett. 111 110501

    [22]

    Zou L J, Marcos D, Diehl S, Putz S, Schmiedmayer J, Majer J, Rabl P 2014 Phys. Rev. Lett. 113 023603

    [23]

    Felicetti S, Sanz M, Lamata L, Romero G, Johansson G, Delsing P, Solano E 2014 Phys. Rev. Lett. 113 093602

    [24]

    Hammerer K, Srensen A S, Polzik E S 2010 Rev. Mod. Phys. 82 1041

  • [1] 陈锋, 任刚. 基于纠缠态表象的双模耦合谐振子量子特性分析.  , 2024, 73(23): 230302. doi: 10.7498/aps.73.20241303
    [2] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠.  , 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [3] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制.  , 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [4] 关欣, 陈刚. 双链超导量子电路中的拓扑非平庸节点.  , 2023, 72(14): 140301. doi: 10.7498/aps.72.20230152
    [5] 刘腾, 陆鹏飞, 胡碧莹, 吴昊, 劳祺峰, 边纪, 刘泱, 朱峰, 罗乐. 离子阱中以声子为媒介的多体量子纠缠与逻辑门.  , 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [6] 李廷伟, 荣星, 杜江峰. 固态单自旋量子控制研究进展.  , 2022, 71(6): 060304. doi: 10.7498/aps.71.20211808
    [7] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制.  , 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [8] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控.  , 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [9] 刘艳红, 吴量, 闫智辉, 贾晓军, 彭堃墀. 多个量子节点确定性纠缠的建立.  , 2019, 68(3): 034202. doi: 10.7498/aps.68.20181614
    [10] 王灿灿. 量子纠缠与宇宙学弗里德曼方程.  , 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [11] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料.  , 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [12] 苏耀恒, 陈爱民, 王洪雷, 相春环. 一维自旋1键交替XXZ链中的量子纠缠和临界指数.  , 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [13] 丛美艳, 杨晶, 黄燕霞. 在不同初态下Dzyaloshinskii-Moriya相互作用及内禀退相干对海森伯系统的量子纠缠的影响.  , 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [14] 夏建平, 任学藻, 丛红璐, 王旭文, 贺树. 两量子比特与谐振子相耦合系统中的量子纠缠演化特性.  , 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [15] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠.  , 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [16] 刘圣鑫, 李莎莎, 孔祥木. Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响.  , 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [17] 陈宇, 邹健, 李军刚, 邵彬. 耗散环境下三原子之间稳定纠缠的量子反馈控制.  , 2010, 59(12): 8365-8370. doi: 10.7498/aps.59.8365
    [18] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议.  , 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [19] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠.  , 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [20] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干.  , 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
计量
  • 文章访问数:  7506
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-11
  • 修回日期:  2018-01-07
  • 刊出日期:  2018-04-05

/

返回文章
返回
Baidu
map