Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Formation mechanism and regulation of silicon vacancy centers in polycrystalline diamond films

Li Jun-Peng Ren Ze-Yang Zhang Jin-Feng Wang Han-Xue Ma Yuan-Chen Fei Yi-Fan Huang Si-Yuan Ding Sen-Chuan Zhang Jin-Cheng Hao Yue

Citation:

Formation mechanism and regulation of silicon vacancy centers in polycrystalline diamond films

Li Jun-Peng, Ren Ze-Yang, Zhang Jin-Feng, Wang Han-Xue, Ma Yuan-Chen, Fei Yi-Fan, Huang Si-Yuan, Ding Sen-Chuan, Zhang Jin-Cheng, Hao Yue
PDF
HTML
Get Citation
  • Diamond silicon vacancy centers (SiV centers) have important application prospects in quantum information technology and biomarkers. In this work, the formation mechanism and regulation method of SiV center during the growth of polycrystalline diamond on silicon substrate are studied. By changing the ratio of nitrogen content to oxygen content in the growing atmosphere of diamond, the photoluminescence intensity of SiV center can be controlled effectively, and polycrystalline diamond samples with the ratios of SiV center photoluminescence peak to diamond intrinsic peak as high as 334.46 and as low as 1.48 are prepared. It is found that nitrogen promotes the formation of SiV center in the growth process, and the inhibition of oxygen. The surface morphology and photoluminescence spectrum for each of these samples show that the photoluminescence peak intensity of SiV center is positively correlated with the grain size of diamond, and the SiV center’s photoluminescence peak in the diamond film with obvious preferred orientation of crystal plane is higher. The distribution of Si centers and SiV centers on the surface of polycrystalline diamond are further characterized and analyzed by photoluminescence, Raman surface scanning and depth scanning spectroscopy. It is found that during the growth of polycrystalline diamond, the substrate silicon diffuses first into the diamond grain and then into the crystal structure to form the SiV center. This paper provides a theoretical basis for the development and application of SiV centers in diamond.
      Corresponding author: Ren Ze-Yang, zeyangren@xidian.edu.cn ; Zhang Jin-Feng, jfzhang@xidian.edu.cn
    • Funds: Project supported by the National Special Fund for Magnetic Confinement Nuclear Fusion Energy R&D Program (Grant No. 2019YFE03100200), the National Natural Science Foundation of China (Grant Nos. 62127812, 62134006, 62004148, 61874080, 62204193), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2009ZYHW0015), the Fundamental Research Funds for the Central Universities, China (Grant No. XJS221103), the China Postdoctoral Science Foundation (Grant No. 2021TQ0256), and the Wuhu and Xidian University Special Fund for Industry-University-Research Cooperation, China (Grant No. XWYCXY-012021010).
    [1]

    Schrand A M, Hens S A C, Shenderova O A 2009 Crit. Rev. Solid State Mater. Sci. 34 18Google Scholar

    [2]

    Yu S J, Kang M W, Chang H C, Chen M C, Yu Y C 2005 J. Am. Chem. Soc. 127 17604Google Scholar

    [3]

    Pingault B, Jarausch D D, Hepp C, Klintberg L, Becker J N, Markham M, Becher C, Atatüre M 2017 Nat. Commun. 8 15579Google Scholar

    [4]

    Rose B C, Huang D, Zhang Z H, Stevenson P, Tyryshkin A M, Sangtawesin S, Srinivasan S, Loudin L, Markham M L, Edmonds A M, Twitchen D J, Lyon S A, deLeon N P 2018 Science 361 60Google Scholar

    [5]

    Bradac C, Gao W, Forneris J, Trusheim M E, Aharonovich I 2019 Nat. Commun. 10 5625Google Scholar

    [6]

    Le Sage D, Arai K, Glenn D R, Devience S J, Pham L M, Rahn-Lee L, Lukin M D, Yacoby A, Komeil A, Walsworth R L 2013 Nature 496 486Google Scholar

    [7]

    Aharonovich I, Neu E 2014 Adv. Opt. Mater. 2 911Google Scholar

    [8]

    A. M. Zaitsev 2000 Phys. Rev. B 61 12909Google Scholar

    [9]

    Dobrinets I A, Vins V G, Zaitsev A M 2013 HPHT-Treated Diamonds (Vol. 181) (Berlin: Springer)

    [10]

    Ganesan K, Ajikumar P K, Ilango S, Mangamma G, Dhara S 2019 Diamond Relat. Mater. 92 150Google Scholar

    [11]

    Goss J P, Jones R, Breuer S J 1996 Phys. Rev. Lett. 77 3041Google Scholar

    [12]

    Rogers L J, Jahnke K D, Teraji T, Marseglia M, Müller C, Naydenov B, Schauffert H, Kranz C, Isoya J, McGuinness L P, Jelezko F 2014 Nat. Commun. 5 4739Google Scholar

    [13]

    Sternschulte H, Thonke K, Sauer R 1994 Phys. Rev. B. 50 14554Google Scholar

    [14]

    Feng T, Schwartz B D 1993 J. Appl. Phys. 73 1415Google Scholar

    [15]

    Neu E, Steinmetz D, Riedrich-Möller J, Gsell S, Fischer M, Schreck M, Becher C 2011 New J. Phys. 13 25012Google Scholar

    [16]

    Ralchenko V G, Sedov V S, Martyanov A K, Bolshakov A P, Boldyrev K N, Krivobok V S, Nikolaev S N, Bolshedvorskii S V, Rubinas O R, Akimov A V, Khomich A A, Bushuev E V, Khmelnitsky R A, Konov V I 2019 Acs Photonics 6 66Google Scholar

    [17]

    Neu E, Albrecht R, Fischer M, Gsell S, Schreck M, Becher C 2012 Phys. Rev. B 85 245207Google Scholar

    [18]

    Yang B, Li J, Guo L, Huang N, Liu L, Zhai Z, Long W, Jiang X 2018 CrystEngComm 20 1158Google Scholar

    [19]

    Neu E K 2012 Silicon Cacancy Color Centers in Chemical Vapor Deposition Diamond: New Insights into Promising Solid State Single Photon Sources (Saarbrücken: Universität des Saarlandes)

    [20]

    Yang B, Yu B, Li H N, Huang N, Liu L S, Jiang X 2019 Carbon 156 242Google Scholar

    [21]

    Dragounová K, Ižák T, Kromka A, Potůček Z, Bryknar Z, Potocký S 2018 Appl. Phys. A 124 219Google Scholar

    [22]

    Potocký S, Izsák T, Varga M, Kromka A 2015 Phys. Status Solidi B 252 2580Google Scholar

    [23]

    Sedov V, Ralchenko V, Khomich A A, Vlasov I, Vul A, Savin S, Goryachev A, Konov V 2015 Diamond Relat. Mater. 56 23Google Scholar

    [24]

    Lv R Y, Yang X G, Yang D W, Niu C Y, Zhao C X, Qin J X, Zang J H, Dong F Y, Dong L, Shan C X 2021 Chin. Phys. Lett. 38 076101Google Scholar

    [25]

    Wan L F, Mu C Y, Liu Y F, Cheng S H, Wang Q L, Li L A, Li H D, Zou G T 2022 Chin. Phys. Lett. 39 036801Google Scholar

    [26]

    王峰浩, 胡晓君 2013 62 158101Google Scholar

    Wang F H, Hu X J 2013 Acta Phys. Sin. 62 158101Google Scholar

    [27]

    Lagomarsino S, Flatae A M, Kambalathmana H, Sledz F, Hunold L, Soltani N, Reuschel P, Sciortino S, Gelli N, Massi M, Czelusniak C, Giuntini L, Agio M 2021 Front. Phys. 8 601362Google Scholar

    [28]

    Locher R, Wild C, Herres N, Behr D, Koidl P 1994 Appl. Phys. Lett. 65 34Google Scholar

    [29]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405Google Scholar

    [30]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095Google Scholar

    [31]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414Google Scholar

    [32]

    Wei W 2007 Vacuum 81 857Google Scholar

    [33]

    Shah S I, Waite M M 1992 Appl. Phys. Lett. 61 3113Google Scholar

    [34]

    Wang J J, Lv F X 1996 Chin. Phys. Lett. 13 473Google Scholar

  • 图 1  (a) 硅衬底金刚石样品的光致发光光谱, 纵轴刻度范围0—20是线性坐标, 20—500是对数坐标; (b) 钼衬底上以样品S1生长条件生长的金刚石样品的光致发光光谱; (c) S1—S5硅空位色心荧光峰与金刚石本征峰的比值; (d) 硅衬底金刚石样品生长速率

    Figure 1.  (a) SiV photoluminescence spectra of diamond samples, the scale range on the vertical axis is 0–20 for linear coordinates, and 20–500 for logarithmic coordinate; (b) photoluminescence spectra of diamond samples grown on molybdenum substrate under sample S1 growth condition; (c) ratio of SiV fluorescence peak to diamond intrinsic peak of sample; (d) growth rate of samples.

    图 2  (a1)—(a5)不同生长条件的金刚石薄膜表面形貌; (b1)—(b5) 以738 nm (硅空位零声子线)为中心的PL表面扫描测试结果(测试范围10 μm× 10 μm, 测试步长100 nm), 其中(a1), (b1) S1; (a2), (b2) S2; (a3), (b3) S3; (a4), (b4) S4; (a5), (b5) S5

    Figure 2.  Morphology (a1)–(a5) and SiV photoluminescence mapping (b1)–(b5) of diamond film under different growth conditions, the test range of the latter is 10 μm×10 μm, and the test step is 100 nm: (a1), (b1) S1; (a2), (b2) S2; (a3), (b3) S3; (a4), (b4) S4; (a5), (b5) S5.

    图 3  不同生长条件的金刚石薄膜以738 nm (硅空位零声子线)为中心的PL深度扫描测试结果(测试深度范围为聚焦深度±4 μm, 长度12 μm, 测试扫描步距为100 nm) (a) S2; (b) S5

    Figure 3.  SiV photoluminescence mapping in the vertical direction of diamond film under different growth conditions, the depth range of the test was ±4 μm, the length was 12 μm, and the scanning step was 100 nm: (a) S2; (b) S5.

    图 4  (a)不同生长条件的金刚石薄膜拉曼光谱测试结果; (b)样品S3的拉曼光谱放大图

    Figure 4.  (a) Raman spectra of diamond film under different growth conditions; (b) magnified Raman spectra of sample S3.

    图 5  样品S3的面扫描结果 (a)样品面扫描测试区域为红框所示10 μm×10 μm区域, 测试步长为100 nm; (b)以1332 cm–1 (金刚石)为中心的拉曼面扫描结果; (c) 以738 nm (金刚石硅空位色心)为中心的PL面扫描结果; (d)以520.7 cm–1 (硅单质)为中心的拉曼面扫描结果; 箭头指出了几个晶粒在各图当中的位置, 从光谱看白色箭头所指的晶粒无硅单质信号, 绿色箭头所指的晶粒既有硅单质信号也有硅空位色心信号

    Figure 5.  Test zone of sample S3 mapping: (a) The scanning test area of the sample surface is the 10 μm×10 μm area shown in the red box, and the test step is 100 nm; (b) Raman mapping centered on 1332 cm–1; (c) PL mapping centered on 738 nm; (d) Raman mapping centered on 520.7 cm–1. The arrows indicate the positions of several grains in each diagram, from the spectrum, the grains indicated by the white arrows have no silicon simple substance signal, while the grains indicated by the green arrows have both silicon simple substance signal and silicon vacancy color center signal.

    图 6  (a)样品S3做深度扫描的表面位置; (b)以520.7 cm–1(硅单质)为中心的拉曼深度扫描结果; (c)以738 nm (硅空位零声子线)为中心的PL深度扫描结果. 虚线框内的大晶粒中硅单质基本都转化为硅空位色心

    Figure 6.  (a) Test zone of sample S3 mapping in the vertical direction, the scanning test area of the sample surface area shown in the red line, and the test step is 100 nm; (b) Raman mapping centered on 520.7 cm–1; (c) PL mapping centered on 738 nm. Silicon elements in the large grains in the wire frame are basically transformed into silicon vacancy color centers.

    表 1  样品生长工艺参数汇总(1 sccm = 1 mL/min, 1 bar = 105 Pa)

    Table 1.  Summary of the growth parameters.

    微波功
    率/W
    气压/
    mbar
    总气
    体流
    量/sccm
    甲烷
    流量
    /sccm
    氮气
    流量
    /sccm
    氧气
    流量
    /sccm
    S142001852001000
    S24200185200100.020
    S342001852001000.5
    S44200185200100.020.5
    S54200185200100.021.0
    DownLoad: CSV
    Baidu
  • [1]

    Schrand A M, Hens S A C, Shenderova O A 2009 Crit. Rev. Solid State Mater. Sci. 34 18Google Scholar

    [2]

    Yu S J, Kang M W, Chang H C, Chen M C, Yu Y C 2005 J. Am. Chem. Soc. 127 17604Google Scholar

    [3]

    Pingault B, Jarausch D D, Hepp C, Klintberg L, Becker J N, Markham M, Becher C, Atatüre M 2017 Nat. Commun. 8 15579Google Scholar

    [4]

    Rose B C, Huang D, Zhang Z H, Stevenson P, Tyryshkin A M, Sangtawesin S, Srinivasan S, Loudin L, Markham M L, Edmonds A M, Twitchen D J, Lyon S A, deLeon N P 2018 Science 361 60Google Scholar

    [5]

    Bradac C, Gao W, Forneris J, Trusheim M E, Aharonovich I 2019 Nat. Commun. 10 5625Google Scholar

    [6]

    Le Sage D, Arai K, Glenn D R, Devience S J, Pham L M, Rahn-Lee L, Lukin M D, Yacoby A, Komeil A, Walsworth R L 2013 Nature 496 486Google Scholar

    [7]

    Aharonovich I, Neu E 2014 Adv. Opt. Mater. 2 911Google Scholar

    [8]

    A. M. Zaitsev 2000 Phys. Rev. B 61 12909Google Scholar

    [9]

    Dobrinets I A, Vins V G, Zaitsev A M 2013 HPHT-Treated Diamonds (Vol. 181) (Berlin: Springer)

    [10]

    Ganesan K, Ajikumar P K, Ilango S, Mangamma G, Dhara S 2019 Diamond Relat. Mater. 92 150Google Scholar

    [11]

    Goss J P, Jones R, Breuer S J 1996 Phys. Rev. Lett. 77 3041Google Scholar

    [12]

    Rogers L J, Jahnke K D, Teraji T, Marseglia M, Müller C, Naydenov B, Schauffert H, Kranz C, Isoya J, McGuinness L P, Jelezko F 2014 Nat. Commun. 5 4739Google Scholar

    [13]

    Sternschulte H, Thonke K, Sauer R 1994 Phys. Rev. B. 50 14554Google Scholar

    [14]

    Feng T, Schwartz B D 1993 J. Appl. Phys. 73 1415Google Scholar

    [15]

    Neu E, Steinmetz D, Riedrich-Möller J, Gsell S, Fischer M, Schreck M, Becher C 2011 New J. Phys. 13 25012Google Scholar

    [16]

    Ralchenko V G, Sedov V S, Martyanov A K, Bolshakov A P, Boldyrev K N, Krivobok V S, Nikolaev S N, Bolshedvorskii S V, Rubinas O R, Akimov A V, Khomich A A, Bushuev E V, Khmelnitsky R A, Konov V I 2019 Acs Photonics 6 66Google Scholar

    [17]

    Neu E, Albrecht R, Fischer M, Gsell S, Schreck M, Becher C 2012 Phys. Rev. B 85 245207Google Scholar

    [18]

    Yang B, Li J, Guo L, Huang N, Liu L, Zhai Z, Long W, Jiang X 2018 CrystEngComm 20 1158Google Scholar

    [19]

    Neu E K 2012 Silicon Cacancy Color Centers in Chemical Vapor Deposition Diamond: New Insights into Promising Solid State Single Photon Sources (Saarbrücken: Universität des Saarlandes)

    [20]

    Yang B, Yu B, Li H N, Huang N, Liu L S, Jiang X 2019 Carbon 156 242Google Scholar

    [21]

    Dragounová K, Ižák T, Kromka A, Potůček Z, Bryknar Z, Potocký S 2018 Appl. Phys. A 124 219Google Scholar

    [22]

    Potocký S, Izsák T, Varga M, Kromka A 2015 Phys. Status Solidi B 252 2580Google Scholar

    [23]

    Sedov V, Ralchenko V, Khomich A A, Vlasov I, Vul A, Savin S, Goryachev A, Konov V 2015 Diamond Relat. Mater. 56 23Google Scholar

    [24]

    Lv R Y, Yang X G, Yang D W, Niu C Y, Zhao C X, Qin J X, Zang J H, Dong F Y, Dong L, Shan C X 2021 Chin. Phys. Lett. 38 076101Google Scholar

    [25]

    Wan L F, Mu C Y, Liu Y F, Cheng S H, Wang Q L, Li L A, Li H D, Zou G T 2022 Chin. Phys. Lett. 39 036801Google Scholar

    [26]

    王峰浩, 胡晓君 2013 62 158101Google Scholar

    Wang F H, Hu X J 2013 Acta Phys. Sin. 62 158101Google Scholar

    [27]

    Lagomarsino S, Flatae A M, Kambalathmana H, Sledz F, Hunold L, Soltani N, Reuschel P, Sciortino S, Gelli N, Massi M, Czelusniak C, Giuntini L, Agio M 2021 Front. Phys. 8 601362Google Scholar

    [28]

    Locher R, Wild C, Herres N, Behr D, Koidl P 1994 Appl. Phys. Lett. 65 34Google Scholar

    [29]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405Google Scholar

    [30]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095Google Scholar

    [31]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414Google Scholar

    [32]

    Wei W 2007 Vacuum 81 857Google Scholar

    [33]

    Shah S I, Waite M M 1992 Appl. Phys. Lett. 61 3113Google Scholar

    [34]

    Wang J J, Lv F X 1996 Chin. Phys. Lett. 13 473Google Scholar

  • [1] He Jian, Jia Yan-Wei, Tu Ju-Ping, Xia Tian, Zhu Xiao-Hua, Huang Ke, An Kang, Liu Jin-Long, Chen Liang-Xian, Wei Jun-Jun, Li Cheng-Ming. Generation of shallow nitrogen-vacancy centers in diamond with carbon ion implantation. Acta Physica Sinica, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [2] Wu Jian-Dong,  Cheng Zhi,  Ye Xiang-Yu,  Li Zhao-Kai,  Wang Peng-Fei,  Tian Chang-Lin,  Cheng Hong-Wei. Coherent electrical control of a single electron spin in diamond nitrogen-vacancy centers. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [3] Wu Jian-Dong, Cheng Zhi, Ye Xiang-Yu, Li Zhao-Kai, Wang Peng-Fei, Tian Chang-Lin, Chen Hong-Wei. Coherent electrical control of single electron spin in diamond nitrogen-vacancy center. Acta Physica Sinica, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [4] Wang Kai-Yue, Guo Rui-Ang, Wang Hong-Xing. Temperature dependence of nitrogen-vacancy optical center in diamond. Acta Physica Sinica, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [5] Chen Long, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun. Effects of oxidation on silicon vacancy photoluminescence and microstructure of separated domain formed nanodiamond films. Acta Physica Sinica, 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [6] Zhang Xiu-Zhi, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Tian Yu-Ming, Chai Yue-Sheng. Effect of nitrogen on the defect luminescence in diamond. Acta Physica Sinica, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [7] Li Qiao-Qiao, Han Wen-Peng, Zhao Wei-Jie, Lu Yan, Zhang Xin, Tan Ping-Heng, Feng Zhi-Hong, Li Jia. Raman spectra of monoand bi-layer graphenes with ion-induced defects-and its dispersive frequency on the excitation energy. Acta Physica Sinica, 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [8] Wang Kai-Yue, Zhu Yu-Mei, Li Zhi-Hong, Tian Yu-Ming, Chai Yue-Sheng, Zhao Zhi-Gang, Liu Kai. The defect luminescences of {100} sector in nitrogen-doped diamond. Acta Physica Sinica, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [9] Wang Kai-Yue, Li Zhi-Hong, Tian Yu-Ming, Zhu Yu-Mei, Zhao Yuan-Yuan, Chai Yue-Sheng. Photoluminescence studies of the neutral vacancy defect known as GR1 centre in diamond. Acta Physica Sinica, 2013, 62(6): 067802. doi: 10.7498/aps.62.067802
    [10] Wang Kai-Yue, Li Zhi-Hong, Zhang Bo, Zhu Yu-Mei. Investigation of vibronic structures of optical centres in diamond by photoluminescence spectra. Acta Physica Sinica, 2012, 61(12): 127804. doi: 10.7498/aps.61.127804
    [11] Wang Kai-Yue, Li Zhi-Hong, Gao Kai, Zhu Yu-Mei. Photoluminescence studies of electron irradiated diamond. Acta Physica Sinica, 2012, 61(9): 097803. doi: 10.7498/aps.61.097803
    [12] Gao Li, Zhang Jian-Min. Photoluminescence of diluted Mg doped ZnO thin films and band-gap change mechanisms. Acta Physica Sinica, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [13] Duan Bao-Xing, Yang Yin-Tang. Calculation of Raman shifts of Si(1-x)Gex and amorphous silicon using Keating model. Acta Physica Sinica, 2009, 58(10): 7114-7118. doi: 10.7498/aps.58.7114
    [14] Miao Jing-Wei, Wang Pei-Lu, Zhu Zhou-Sen, Yuan Xue-Dong, Wang Hu, Yang Chao-Wen, Shi Mian-Gong, Miao Lei, Sun Wei-Li, Zhang Jing, Liao Xue-Hua. Photoluminescence spectrum of monocrystalline Si implanted by nitrogen cluster ions. Acta Physica Sinica, 2008, 57(4): 2174-2178. doi: 10.7498/aps.57.2174
    [15] Wang Ying-Long, Lu Li-Fang, Yan Chang-Yu, Chu Li-Zhi, Zhou Yang, Fu Guang-Sheng, Peng Ying-Cai. The laser ablated deposition of Si nanocrystalline film with narrow photoluminescence peak. Acta Physica Sinica, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [16] Bai Ying, Lan Yan-Na, Mo Yu-Jun. Temperature measurement from the Raman spectra of porous silicon. Acta Physica Sinica, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [17] Huang Kai, Wang Si-Hui, Shi Yi, Qin Guo-Yi, Zhang Rong, Zheng You-Dou. Effect of inner electric field on the photoluminescence spectrum of nanosilicon. Acta Physica Sinica, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [18] Hu Xiao-Jun, Dai Yong-Bing, He Xian-Chang, Shen He-Sheng, Li Rong-Bin. . Acta Physica Sinica, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [19] LIANG ER-JUN, CHAO MING-JU. LASER-INDUCED LATTICE DEFORMATION OF POROUS SILICON REVEALED BY RAMAN AND PHOTOLUMINESCENCE SPECTROSCOPIES. Acta Physica Sinica, 2001, 50(11): 2241-2246. doi: 10.7498/aps.50.2241
    [20] DAI YONG-BING, SHEN HE-SHENG, ZHANG ZHI-MING, HE XIAN-CHANG, HU XIAO-JUN, SUN FANG-HONG, XIN HAI-WEI. A MOLECULAR DYNAMICS SIMULATION OF DIAMOND/SILICON(001) INTERFACE. Acta Physica Sinica, 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
Metrics
  • Abstract views:  4516
  • PDF Downloads:  131
  • Cited By: 0
Publishing process
  • Received Date:  18 July 2022
  • Accepted Date:  18 November 2022
  • Available Online:  28 November 2022
  • Published Online:  05 February 2023

/

返回文章
返回
Baidu
map