Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Statistical analysis of characteristics of classified type II radio bursts and their associated solar energetic particle events

Zhu Cong Ding Liu-Guan Zhou Kun-Lun Qian Tian-Qi

Citation:

Statistical analysis of characteristics of classified type II radio bursts and their associated solar energetic particle events

Zhu Cong, Ding Liu-Guan, Zhou Kun-Lun, Qian Tian-Qi
PDF
HTML
Get Citation
  • In this paper, we investigate 273 type II radio burst events detected by Wind, STEREO spacecraft from January 2010 to March 2018 during the 24th solar cycle. We classify all events as five groups or sub-types according to their starting and ending frequencies, and then analyze the observed characteristics of each group of type II radio bursts and the correlation between the occurrence of solar energetic particle (SEP) events and the associated coronal mass ejection (CME) or type II radio bursts. What we find is as follows. 1) In each group of type II radio burst events, the CME speed (v), width (WD), mass (m), and kinetic energy (Ek) associated with SEP events are generally greater than those with no SEP events, indicating that the generation of SEP events requires a fast and wide energetic CME eruption. 2) Compared with type II radio bursts starting from the DH band, type II radio bursts starting from the metric band have a higher proportion of large SEP events. Multi-band type II radio bursts are more likely to produce SEP events than single-band events, where M-DH-KM type II bursts have the highest proportion of SEP events (73%), and the DH IIs only have the lowest one (19%). 3) In each kind of type II radio bursts, the type IIs with SEP events usually have higher starting frequencies (lower shock forming heights), lower ending frequencies (higher ending heights) and longer durations than those with no SEP events; coronal shock waves that are easy to produce SEP events (especially large SEP events) generally begin to form at a lower height (such as < 3Rs, Rs: solar radius), and are sustained to a much larger height (such as > 30Rs). 4) There exists a strong negative correlation between the duration and the ending frequency of type II radio burst (cc = –0.93). The proportion of SEP events increases with the increase of the duration of type II radio burst, and decreases with the increase of the ending frequency, which largely depends on the CME speed and other properties. The results of this paper further show that the generation of SEP events is greatly related to the sub-types and characteristics of type II radio bursts. The higher the starting frequencies and the lower the ending frequencies of type II radio bursts, such as M-DH-KM type II bursts, of which the CME drives to forming shock waves at a very low height and propagates to a very large height, the longer the duration of the shock, the longer the time it takes to accelerate the particles, and the greater the probability of SEP events (especially large SEP events) is.
      Corresponding author: Ding Liu-Guan, dlg@nuist.edu.cn
    • Funds: Project supported by the Program of Joint Funds of the National Natural Science Foundation of China (Grant No. U1731105), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20171456), the Specialized Research Fund for Key Laboratory of Dark Matter and Space Astronomy, Chinese Academy of Sciences, and the Science Research Project of Binjiang College, Nanjing University of Information Science and Technology, China (2020)
    [1]

    Mclean D J, Labrum N R 1985 Astron. Nachr. 308 182Google Scholar

    [2]

    Benz A O 1986 Sol. Phys. 104 99Google Scholar

    [3]

    Payne-Scott R, Yabsley D E, Bolton J G 1947 Nature 160 256Google Scholar

    [4]

    Wild J P, McCready L L 1950 Aust. J. Chem. 3 387Google Scholar

    [5]

    Nelson G J, Melrose D B 1985 Type II Bursts (Cambridge and New York: Cambridge University Press) pp333−359

    [6]

    Cane H V 1983 Solar Physics (Pasadena: JPL Solar Wind Five) pp703−709

    [7]

    Gopalswamy N, Thompson B J 2000 J. Atmos. Solar-Terr. Phys. 62 1457Google Scholar

    [8]

    Cane H V, Stone R G, Fainberg J, Stewart R T, Steinberg J L, Hoang S 1981 Geophys. Res. Lett. 8 1285Google Scholar

    [9]

    Prakash O, Umapathy S, Shanmugaraju A, Vršnak B 2009 Sol. Phys. 258 105Google Scholar

    [10]

    Prakash O, Umapathy S, Shanmugaraju A, Pappa Kalaivani P, Vršnak B 2010 Sol. Phys. 266 135Google Scholar

    [11]

    Gopalswamy N, Yashiro S, Kaiser M L, Howard R A, Bougeret J L 2001 J. Geophys. Res. Atmos. 106 29219Google Scholar

    [12]

    Lara A, Gopalswamy N, Nunes S, Muñoz G, Yashiro S 2003 J. Geophys. Res. 30 8016Google Scholar

    [13]

    Reams D V 1995 Rev. Geophys. 33 585Google Scholar

    [14]

    Reams D V 1999 Space. Sci. Rev. 90 413Google Scholar

    [15]

    Kahler S W 1996 Amer. Inst. Phys. 374 61Google Scholar

    [16]

    Kahler S W, Vourlidas A 2005 J. Geoghys. Res. 110 A12S01Google Scholar

    [17]

    Kahler S W 2001 J. Geophys. Res. 106 20947Google Scholar

    [18]

    Kahler S W, Vourlidas A 2014 Astrophys. J. 784 47Google Scholar

    [19]

    Desai M, Giacalone J 2016 Rev. Sol. Phys. 13 3Google Scholar

    [20]

    Lugaz N, Temmer M, Wang Y M, Farrugia C J 2017 Sol. Phys. 292 64Google Scholar

    [21]

    Le G M, Li C, Zhang X F 2017 Res. Astron. Astrophys. 17 073Google Scholar

    [22]

    Le G M, Zhang X F 2017 Res. Astron. Astrophys. 17 123Google Scholar

    [23]

    Zhao M X, Le G M, Chi Y T 2018 Res. Astron. Astrophys. 18 074Google Scholar

    [24]

    Zhao M X, Le G M 2020 Res. Astron. Astrophys. 20 037Google Scholar

    [25]

    Gopalswamy N, Yashiro S, Lara A, Kaiser M L, Thompson B J, Gallagher P T, Howard R A 2003 Goephys. Res. Lett. 30 12Google Scholar

    [26]

    Cliver E W, Kahler S W 2004 Astrophys. J. 605 902Google Scholar

    [27]

    Gopalswamy N, Aguilar-Rodriguez E, Yashiro S, Nunes S, Kaiser M L, Howard R A 2005 J. Geophys. Res. 110 A12S07Google Scholar

    [28]

    Winter L M, Ledbetter K, 2015 Astrophys. J. 809 105Google Scholar

    [29]

    陈玉林, 季晶晶, 董丽花, 丁留贯, 李鹏 2015 大气科学学报 38 259Google Scholar

    Chen Y L, Ji J J, Dong L H, Ding L G, Li P 2015 Trans. Atmos. Sci. 38 259Google Scholar

    [30]

    Marqué C, Posner A, Klein K L 2006 Astrophys. J. 642 1222Google Scholar

    [31]

    Kahler S W 2005 Astrophys. J. 628 1014Google Scholar

    [32]

    Su W, Cheng X, Ding M D, Sun J Q 2015 Astrophys. J. 804 88Google Scholar

    [33]

    王智伟, 丁留贯, 周坤论, 乐贵明 2018 地球 61 3515Google Scholar

    Wang Z W, Ding L G, Zhou K L, Le G M 2018 Chin. J. Geophys. 61 3515Google Scholar

    [34]

    Ding L G, Wang Z W, Feng L, Li G, Jiang Y 2019 Res. Astron. Astrophys. 19 001Google Scholar

    [35]

    Tylka A J, Cohen C M S, Dietrich W F, Krucker S, McGuire R E, Mewaldt R A, Ng C K, Reames D V, Share G H 2003 Proceeding of the 28th International Cosmic Ray Conference Tsukuba, Japan, July 31−August 7, 2003 p3305

    [36]

    Kim R S, Cho K S, Lee J, Bong S C, Park Y D 2014 J. Geophys. Res. A: Space Phys. 119 9419Google Scholar

    [37]

    Ding L G, Cao X X, Wang Z W, Le G M 2016 Res. Astron. Astrophys. 16 8Google Scholar

    [38]

    Bemporad A, Manceso S 2013 J. Adv. Res. 4 287Google Scholar

    [39]

    周坤论, 丁留贯, 王智伟, 封莉 2019 68 139601Google Scholar

    Zhou K L, Ding L G, Wang Z W, Feng L 2019 Acta Phys. Sin. 68 139601Google Scholar

    [40]

    Shanmugaraju A, Moon Y J, Dryer M, Umapathy S 2003 Sol. Phys. 217 301Google Scholar

    [41]

    周坤论, 丁留贯, 钱天麒, 朱聪, 王智伟, 封莉 2020 69 169601Google Scholar

    Zhou K L, Ding L G, Qian T Q, Zhu C, Wang Z W, Feng L 2020 Acta Phys. Sin. 69 169601Google Scholar

  • 图 1  CME速度、角宽、质量和动能统计直方图

    Figure 1.  Histogram of CME speed (v), angular width (WD), mass (m) and kinetic energy (Ek).

    图 2  耀斑等级统计直方图

    Figure 2.  Histogram of solar flare classes.

    图 3  (a) II型射电暴起始频率分布; (b)−(f) 五类II型射电暴起始频率统计直方图(G1−G5)

    Figure 3.  (a) Starting frequency distribution of type II radio bursts; (b)−(f) histogram of the starting frequencies of type II radio bursts for five groups (G1−G5).

    图 4  (a) II型射电暴结束频率分布; (b)−(f) 五类II型射电暴结束频率统计直方图(G1−G5)

    Figure 4.  (a) Ending frequency distribution of type II radio bursts; (b)−(f) histogram of the ending frequencies of type II radio bursts for five groups (G1−G5).

    图 5  (a) II型射电暴持续时间分布; (b)−(f) 五类II型射电暴持续时间统计直方图(G1−G5)

    Figure 5.  (a) Duration distribution of type II radio bursts; (b)−(f) histogram of the durations of type II radio burst for five groups (G1−G5).

    图 6  (a)−(e) II型射电暴持续时间与结束频率关系; (f), (g) 持续时间和结束频率各区间SEP事件百分比

    Figure 6.  (a)−(e) Relationship between duration and ending frequency of type II radio bursts; (f), (g) percentage of SEP events in each interval of duration and ending frequency.

    图 7  II型射电暴起始高度的统计直方图

    Figure 7.  Histogram of the starting heights of the different group of type II radio bursts.

    图 8  II型射电暴结束高度的统计直方图

    Figure 8.  Histogram of the ending heights of the different group of type II radio bursts.

    图 9  II型射电暴维持高度统计直方图

    Figure 9.  Histogram of the sustained heights of the type II radio bursts.

    表 1  II型射电暴伴随SEP事件的统计表

    Table 1.  SEP events associated with different group of type II radio bursts.

    事件类型G1G2G3G4G5All
    IIs事件数10732363860273
    无SEP事件数8026202216164
    SEP事件数276161644109
    SEP事件占比/%251944427340
    大SEP事件数13312134081
    大SEP事件占比/%12933346730
    SEP事件强度均值0.530.020.494.8938.7416.41
    SEP事件强度中值0.010.010.20.240.530.09
    大SEP事件强度均值1.090.040.656.0242.6222.28
    大SEP事件强度中值0.130.020.330.250.60.34
    DownLoad: CSV

    表 2  耀斑特征时间统计表

    Table 2.  Characteristic times of associated solar flares.

    类型T 1/minT 2/min
    均值中值均值中值
    G1: M IIs only14102619
    G2: DH IIs only38186633
    G3: M-DH IIs19163227
    G4: DH-KM IIs35237052
    G5: M-DH-KM IIs46227349
    DownLoad: CSV
    Baidu
  • [1]

    Mclean D J, Labrum N R 1985 Astron. Nachr. 308 182Google Scholar

    [2]

    Benz A O 1986 Sol. Phys. 104 99Google Scholar

    [3]

    Payne-Scott R, Yabsley D E, Bolton J G 1947 Nature 160 256Google Scholar

    [4]

    Wild J P, McCready L L 1950 Aust. J. Chem. 3 387Google Scholar

    [5]

    Nelson G J, Melrose D B 1985 Type II Bursts (Cambridge and New York: Cambridge University Press) pp333−359

    [6]

    Cane H V 1983 Solar Physics (Pasadena: JPL Solar Wind Five) pp703−709

    [7]

    Gopalswamy N, Thompson B J 2000 J. Atmos. Solar-Terr. Phys. 62 1457Google Scholar

    [8]

    Cane H V, Stone R G, Fainberg J, Stewart R T, Steinberg J L, Hoang S 1981 Geophys. Res. Lett. 8 1285Google Scholar

    [9]

    Prakash O, Umapathy S, Shanmugaraju A, Vršnak B 2009 Sol. Phys. 258 105Google Scholar

    [10]

    Prakash O, Umapathy S, Shanmugaraju A, Pappa Kalaivani P, Vršnak B 2010 Sol. Phys. 266 135Google Scholar

    [11]

    Gopalswamy N, Yashiro S, Kaiser M L, Howard R A, Bougeret J L 2001 J. Geophys. Res. Atmos. 106 29219Google Scholar

    [12]

    Lara A, Gopalswamy N, Nunes S, Muñoz G, Yashiro S 2003 J. Geophys. Res. 30 8016Google Scholar

    [13]

    Reams D V 1995 Rev. Geophys. 33 585Google Scholar

    [14]

    Reams D V 1999 Space. Sci. Rev. 90 413Google Scholar

    [15]

    Kahler S W 1996 Amer. Inst. Phys. 374 61Google Scholar

    [16]

    Kahler S W, Vourlidas A 2005 J. Geoghys. Res. 110 A12S01Google Scholar

    [17]

    Kahler S W 2001 J. Geophys. Res. 106 20947Google Scholar

    [18]

    Kahler S W, Vourlidas A 2014 Astrophys. J. 784 47Google Scholar

    [19]

    Desai M, Giacalone J 2016 Rev. Sol. Phys. 13 3Google Scholar

    [20]

    Lugaz N, Temmer M, Wang Y M, Farrugia C J 2017 Sol. Phys. 292 64Google Scholar

    [21]

    Le G M, Li C, Zhang X F 2017 Res. Astron. Astrophys. 17 073Google Scholar

    [22]

    Le G M, Zhang X F 2017 Res. Astron. Astrophys. 17 123Google Scholar

    [23]

    Zhao M X, Le G M, Chi Y T 2018 Res. Astron. Astrophys. 18 074Google Scholar

    [24]

    Zhao M X, Le G M 2020 Res. Astron. Astrophys. 20 037Google Scholar

    [25]

    Gopalswamy N, Yashiro S, Lara A, Kaiser M L, Thompson B J, Gallagher P T, Howard R A 2003 Goephys. Res. Lett. 30 12Google Scholar

    [26]

    Cliver E W, Kahler S W 2004 Astrophys. J. 605 902Google Scholar

    [27]

    Gopalswamy N, Aguilar-Rodriguez E, Yashiro S, Nunes S, Kaiser M L, Howard R A 2005 J. Geophys. Res. 110 A12S07Google Scholar

    [28]

    Winter L M, Ledbetter K, 2015 Astrophys. J. 809 105Google Scholar

    [29]

    陈玉林, 季晶晶, 董丽花, 丁留贯, 李鹏 2015 大气科学学报 38 259Google Scholar

    Chen Y L, Ji J J, Dong L H, Ding L G, Li P 2015 Trans. Atmos. Sci. 38 259Google Scholar

    [30]

    Marqué C, Posner A, Klein K L 2006 Astrophys. J. 642 1222Google Scholar

    [31]

    Kahler S W 2005 Astrophys. J. 628 1014Google Scholar

    [32]

    Su W, Cheng X, Ding M D, Sun J Q 2015 Astrophys. J. 804 88Google Scholar

    [33]

    王智伟, 丁留贯, 周坤论, 乐贵明 2018 地球 61 3515Google Scholar

    Wang Z W, Ding L G, Zhou K L, Le G M 2018 Chin. J. Geophys. 61 3515Google Scholar

    [34]

    Ding L G, Wang Z W, Feng L, Li G, Jiang Y 2019 Res. Astron. Astrophys. 19 001Google Scholar

    [35]

    Tylka A J, Cohen C M S, Dietrich W F, Krucker S, McGuire R E, Mewaldt R A, Ng C K, Reames D V, Share G H 2003 Proceeding of the 28th International Cosmic Ray Conference Tsukuba, Japan, July 31−August 7, 2003 p3305

    [36]

    Kim R S, Cho K S, Lee J, Bong S C, Park Y D 2014 J. Geophys. Res. A: Space Phys. 119 9419Google Scholar

    [37]

    Ding L G, Cao X X, Wang Z W, Le G M 2016 Res. Astron. Astrophys. 16 8Google Scholar

    [38]

    Bemporad A, Manceso S 2013 J. Adv. Res. 4 287Google Scholar

    [39]

    周坤论, 丁留贯, 王智伟, 封莉 2019 68 139601Google Scholar

    Zhou K L, Ding L G, Wang Z W, Feng L 2019 Acta Phys. Sin. 68 139601Google Scholar

    [40]

    Shanmugaraju A, Moon Y J, Dryer M, Umapathy S 2003 Sol. Phys. 217 301Google Scholar

    [41]

    周坤论, 丁留贯, 钱天麒, 朱聪, 王智伟, 封莉 2020 69 169601Google Scholar

    Zhou K L, Ding L G, Qian T Q, Zhu C, Wang Z W, Feng L 2020 Acta Phys. Sin. 69 169601Google Scholar

  • [1] Zhang Sheng-Bo, Zhang Huan-Hao, Zhang Jun, Mao Yong-Jian, Chen Zhi-Hua, Shi Qi-Chen, Zheng Chun. Magnetic field suppression characteristics in interaction process between shock wave and light gas cylinder. Acta Physica Sinica, 2024, 73(8): 084701. doi: 10.7498/aps.73.20231916
    [2] Yan Hao, Ding Liu-Guan, Feng Li, Gu Bin. Relationship between solar energetic particle intensity and coronal mass ejections and its associated type II radio bursts. Acta Physica Sinica, 2024, 73(7): 079601. doi: 10.7498/aps.73.20231855
    [3] Jia Lei-Ming, Wang Zhi-Huan, Wang Shu-Fei, Zhong Wei, Tian Zhou. On theoretical calculation method for two-dimensional planar shock wave refractions. Acta Physica Sinica, 2023, 72(6): 064701. doi: 10.7498/aps.72.20222042
    [4] Sha Sha, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun, Wu Wei-Tao, Shi Qi-Chen. Mechanism of longitudinal magnetic field suppressed Richtmyer-Meshkov instability. Acta Physica Sinica, 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [5] Peng Xu, Li Bin, Wang Shun-Yao, Rao Guo-Ning, Chen Wang-Hua. Gas-liquid two-phase flow of liquid film breaking process under shock wave. Acta Physica Sinica, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [6] Zhou Kun-Lun, Ding Liu-Guan, Qian Tian-Qi, Zhu Cong, Wang Zhi-Wei, Feng Li. Statistical analysis of the relationship between type II radio enhancement and solar energetic particle event. Acta Physica Sinica, 2020, 69(16): 169601. doi: 10.7498/aps.69.20200041
    [7] Zhou Kun-Lun, Ding Liu-Guan, Wang Zhi-Wei, Feng Li. Statistical analysis of shock properties driven by coronal mass ejections based on observations of type II radio bursts. Acta Physica Sinica, 2019, 68(13): 139601. doi: 10.7498/aps.68.20190223
    [8] Chen Zhe, Wu Jiu-Hui, Chen Xin, Lei Hao, Hou Jie-Jie. Experimental study on screech tone mode switching of supersonic jet flowing through rectangular nozzles. Acta Physica Sinica, 2015, 64(5): 054703. doi: 10.7498/aps.64.054703
    [9] Sun Xiao-Yan, Zhu Jun-Fang. Study of the shock wave induced by closing partial road in traffic flow. Acta Physica Sinica, 2015, 64(11): 114502. doi: 10.7498/aps.64.114502
    [10] Yi Shi-He, Chen Zhi. Review of recent experimental studies of the shock train flow field in the isolator. Acta Physica Sinica, 2015, 64(19): 199401. doi: 10.7498/aps.64.199401
    [11] Chen Zhi, Yi Shi-He, Zhu Yang-Zhu, He Lin, Quan Peng-Cheng. Experimental study on of dynamics of particles in the flow filed with intensive gradients. Acta Physica Sinica, 2014, 63(18): 188301. doi: 10.7498/aps.63.188301
    [12] Zhang Qiang, Chen Xin, He Li-Ming, Rong Kang. An experimental study of rectangular under-expanded supersonic jets collision. Acta Physica Sinica, 2013, 62(8): 084706. doi: 10.7498/aps.62.084706
    [13] Sha Sha, Chen Zhi-Hua, Zhang Huan-Hao, Jiang Xiao-Hai. Numerical investigations on the Schardin's problem. Acta Physica Sinica, 2012, 61(6): 064702. doi: 10.7498/aps.61.064702
    [14] Wang Jian, Li Ying-Hong, Cheng Bang-Qin, Su Chang-Bing, Song Hui-Min, Wu Yun. The mechanism investigation on shock wave controlled by plasma aerodynamic actuation. Acta Physica Sinica, 2009, 58(8): 5513-5519. doi: 10.7498/aps.58.5513
    [15] Wang Jing, Feng Xue-Shang. Classified prediction of geomagnetic disturbance caused by coronal mass ejection. Acta Physica Sinica, 2007, 56(4): 2466-2474. doi: 10.7498/aps.56.2466
    [16] Wu Qin-Kuan. The shock solution for a class of the nonlinear equations by the Sinc-Galerkin method. Acta Physica Sinica, 2006, 55(4): 1561-1564. doi: 10.7498/aps.55.1561
    [17] Wu Qin-Kuan. The indirect matching solution for a class of shock problems. Acta Physica Sinica, 2005, 54(6): 2510-2513. doi: 10.7498/aps.54.2510
    [18] Zhou Xiao-Feng, Tao Shu-Fen, Liu Zuo-Quan, Kan Jia-De, Li Hai-Yang. . Acta Physica Sinica, 2002, 51(2): 322-325. doi: 10.7498/aps.51.322
    [19] He Feng, Yang Jing-Long, Shen Meng-Yu. . Acta Physica Sinica, 2002, 51(9): 1918-1922. doi: 10.7498/aps.51.1918
    [20] ZHANG SHU-DONG, ZHANG WEI-JUN. VELOCITY OF EMISSION PARTICLES AND SHOCKWAVE PRODUCED BY LASER-ABLATED Al TARGET. Acta Physica Sinica, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
Metrics
  • Abstract views:  5861
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  29 October 2020
  • Accepted Date:  17 December 2020
  • Available Online:  21 April 2021
  • Published Online:  05 May 2021

/

返回文章
返回
Baidu
map