Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Relationship between solar energetic particle intensity and coronal mass ejections and its associated type II radio bursts

Yan Hao Ding Liu-Guan Feng Li Gu Bin

Citation:

Relationship between solar energetic particle intensity and coronal mass ejections and its associated type II radio bursts

Yan Hao, Ding Liu-Guan, Feng Li, Gu Bin
PDF
HTML
Get Citation
  • Based on the multiple-vantage observations of STEREO, SOHO, wind and other spacecraft, the fast and wide coronal mass ejections (CME) during the 24th solar cycle from January 2010 to September 2014 are selected in this paper. Using the outputs of Richardson’s (2014) empirical model of solar energetic particle (SEP) intensity under different conditions, the effects of its associations such as CME, pre-CME, and type II radio bursts, on SEP intensity are analyzed, and the relationship between SEP event and these characteristics is also discussed. The main conclusions are as follows. 1) The presence or absence of pre-CME within 13 h before fast CME significantly improves the model prediction effect and has a significant influence on whether fast CME produces SEP event. Compared with the events without pre-CMEs, the events with pre-CMEs have a low proportion of false alarms (FR: 47.7% vs. 70%). However, the number of pre-CMEs does not improve the model output. 2) CMEs with type-II radio bursts have significantly lower FR to generate SEP events than fast CMEs without type-II radio bursts (42% vs. 68%). And selecting type-II radio bursts as a constraint will filter out some small/weak SEP events, the relationship between model predictions and observations especially for large SEP events (e.g. Ip ≥ 0.01 pfu/MeV) will stand out. Moreover, if the type-II radio enhancement is taken into account, FR can be further reduced to 29.4%, and the proportion of hits can be further increased (HR: 48.5%), and the model prediction is significantly improved. 3) The larger the start frequency of type II radio bursts, the smaller the end frequency is, and FR decreases slightly, but at the same time, a large number of SEP events are excluded by this condition, and the results show that the constraints on the start/end frequency of type-II radio bursts do not improve the model predictions distinctly. 4) If the sub-classification of type-II radio bursts is considered as the model constraint, the CMEs associated with multi-band type-II radio bursts have better model predictions than those with single-band events. For example, m-DH-km type-II radio bursts have lower FR (35.4%) and higher HR (48%), and the accuracy of empirical model is higher. In summary, we find that in addition to the velocity and angular width of CME, the associations of pre-CME, type II radio bursts and their enhancement, and multi-band sub-classification are the favorable conditions for CME to generate SEP events. The SEP intensities obtained by the empirical model have better consistency with the observations, and better predictions can be obtained. This investigation indicates that SEP events are more likely generated by fast and wide CMEs accompanied by pre-CMEs, multi-band type II radio bursts and their enhancements, which seem to serve as discriminative signal for SEP-rich and SEP-poor CMEs.
      Corresponding author: Ding Liu-Guan, dlg@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 42274215), the “Qing Lan” Program of Jiangsu Province, China, and the “333” High-Level Talent Cultivation Project of Jiangsu Province, China.
    [1]

    王劲松, 吕建永 2010 空间天气学 第1版 (北京: 气象出版社) 第16—31页

    Wang J S, Lü J Y 2010 Space Weather Science (1st Ed.) (Beijing: Meteorological Press) pp16–31

    [2]

    Kahler S W 2001 J. Geophys. Res. 106 20947Google Scholar

    [3]

    Reams D V 1999 Space. Sci. Rev. 90 413Google Scholar

    [4]

    Cliver E W, Kahler S W 2004 Astrophys. J. 605 902Google Scholar

    [5]

    Kahler S W 1992 Annu. Rev. Astron. Astrophys. 30 113Google Scholar

    [6]

    Gopalswamy N, Yashiro S, Krucker S, Stenborg G, Howard R A 2004 J. Geophys. Res. 109 12Google Scholar

    [7]

    Ding L G, Jiang Y, Zhao L, Li G 2013 Astrophys. J. 763 30Google Scholar

    [8]

    Cane H V, Von Rosenvinge T T, Cohen C M S, Mewaldt R A 2003 Geophys. Res. Lett. 30 12Google Scholar

    [9]

    Cane H V, Mewaldt R A, Cohen C M S, Von Rosenvinge T T 2006 J. Geophys. Res. 111 90Google Scholar

    [10]

    Le G M, Zhang X F 2017 Rev. Astron. Astrophys. 17 123Google Scholar

    [11]

    Le G M, Li C, Zhang X F 2017 Rev. Astron. Astrophys. 17 73Google Scholar

    [12]

    Wang Y, Lyu D, Wu X H, Qin G 2022 Astrophys. J. 940 67Google Scholar

    [13]

    Stewart R T, McCabe M K, Koomen M J, Hansen R T, Dulk G A 1974 Sol. Phys. 36 203Google Scholar

    [14]

    Hundhausen A J, Holzer T E, Low B C 1987 J. Geophys. Res. 92 0148Google Scholar

    [15]

    Vršnak B, Lulić S 2000 Sol. Phys. 196 181Google Scholar

    [16]

    Vršnak B, Cliver E 2008 Sol. Phys. 253 215Google Scholar

    [17]

    Kahler S W 1982 J. Geophys. Res. 87 2439Google Scholar

    [18]

    Cane H V, Erickson W C, Prestage N P 2002 J. Geophys. Res. 107 1315Google Scholar

    [19]

    Wild J, McCready L 1950 Aust. J. Sci. Res. Ser. A: Phys. Sci. 3 387

    [20]

    Cane H V, Stone R G, Fainberg J, Stewart R T, Steinberg J L, Hoang S 1981 Geophys. Res. Lett. 8 1285Google Scholar

    [21]

    Prakash O, Umapathy S, Shanmugaraju A, Vršnak B 2009 Sol. Phys. 258 105Google Scholar

    [22]

    Kahler S W 1996 Amer. Inst. Phys. 374 61

    [23]

    Gopalswamy N, Aguilar-Rodriguez E, Yashiro S, Nunes S, Kaiser M L, Howard R A 2005 J. Geophys. Res. 110 07Google Scholar

    [24]

    Winter L M, Ledbetter K 2015 Astrophys. J. 809 105Google Scholar

    [25]

    Kahler S W, Ling A G, Gopalswamy N 2019 Sol. Phys. 294 13Google Scholar

    [26]

    朱聪, 丁留贯, 周坤论, 钱天麒 2021 70 099601Google Scholar

    Zhu C, Ding L G, Zhou K L, Qian T Q 2021 Acta Phys. Sin. 70 099601Google Scholar

    [27]

    Marqué C, Posner A, Klein K L 2006 Astrophys. J. 642 1222Google Scholar

    [28]

    Gopalswamy N, Yashiro S, Akiyama S, Mäkelä P, Xie H, Kaiser M, Howard R, Bougeret J 2008 Ann. Geophys. 26 3033Google Scholar

    [29]

    Kahler S W, Reames D V, Burkepile J T 2000 High Energy Solar Physics- Anticipating Hessi 206 468

    [30]

    Shen C, Li G, Kong X, Hu J, Sun X D, Ding L, Chen Y, Wang Y M, Xia L 2013 Astrophys. J. 763 2Google Scholar

    [31]

    Ding L G, Li G, Dong L H, Jiang Y, Jian Y, Gu B 2014 J. Geophys. Res. 119 1463Google Scholar

    [32]

    Gopalswamy N, Yashiro S, Kaiser M L, Howard R A, Bougeret J L 2001 Astrophys. J. 548 L91Google Scholar

    [33]

    Ding L G, Wang Z W, Feng L, Li G, Jiang Y 2019 Res. Astron. Astrophys. 19 001Google Scholar

    [34]

    周坤论, 丁留贯, 钱天麒, 朱聪, 王智伟, 封莉 2020 69 169601Google Scholar

    Zhou K L, Ding L G, Qian T Q, Zhu C, Wang Z W, Feng L 2020 Acta Phys. Sin. 69 169601Google Scholar

    [35]

    Posner A 2007 Space Weather 5 05001Google Scholar

    [36]

    Richardson I G, Mays M L, Thompson B J 2018 Space Weather 16 1862Google Scholar

    [37]

    Falconer D, Barghouty A F, Khazanov I, Moore R 2011 Space Weather 9 04003Google Scholar

    [38]

    Papaioannou A, Anastasiadis A, Kouloumvakos A, Paassilta M, Vainio R, Valtonen E, Belov A V, Eroshenko E, Abunina M, Abunin A 2018 Sol. Phys. 293 1Google Scholar

    [39]

    Laurenza M, Cliver E W, Hewitt J, Storini M, Ling A G, Balch C C, Kaiser M L 2009 Space Weather 7 4Google Scholar

    [40]

    Balch C C 1999 Radiat. Meas. 30 231Google Scholar

    [41]

    Bruno A, Richardson I G 2021 Sol. Phys. 296 36Google Scholar

    [42]

    Garcia H A 2004 Space Weather 2 02002Google Scholar

    [43]

    Huang X, Wang H N, Li L P 2012 Res. Astron. Astrophys. 12 313Google Scholar

    [44]

    Núñez M 2011 Space Weather 9 07003Google Scholar

    [45]

    Núñez M 2015 Space Weather 13 727Google Scholar

    [46]

    Núñez M, Santiago P, Malandraki O 2017 Space Weather 15 861Google Scholar

    [47]

    Núñez M 2018 J. Space Weather Space Clim. 8 A36Google Scholar

    [48]

    Richardson L G, von Rosenvinge T T, Cane H V, Christian E R, Cohen C M S, Labrador A W, Leske R A, Mewaldt R A, Wiedenbeck M E, Stone E C 2014 Sol. Phys. 289 3059Google Scholar

    [49]

    Torres J, Zhao L, Chan P K, Zhang M 2022 Space Weather 20 002797Google Scholar

    [50]

    王智伟, 丁留贯, 周坤论, 乐贵明 2018 地球 61 3515Google Scholar

    Wang Z W, Ding L G, Zhou K L, Le G M 2018 Chin. J. Geophys. 61 3515Google Scholar

    [51]

    Hanssen A W, Kuipers W J A 1965 Koninklijk Ned. Meteor. Instit. 81 2

  • 图 1  SEP强度预测值(Ip)与观测值(Io)对比, SEP事件阈值准线将事件样本分为四类

    Figure 1.  Predicted versus observed SEP peak intensities at SOHO or STEREO-A/B (STA/STB) spacecraft for the fast and wide CMEs with speed greater than 900 km/s and width greater than 60º in the study period. The quadrants defined by crosshairs set at equal predicted and observed intensity thresholds divide the events into hits, false alarms, correct rejections, and misses.

    图 2  (a)不存在pre-CME时, SEP强度预测值与观测值关系; (b)存在pre-CME时, SEP强度预测值与观测值关系; (c)样本事件数量随pre-CME事件数量的变化(黑), HR, FR, CR和MR随pre-CME事件数量的变化(蓝、红、橙、紫)

    Figure 2.  Predicted versus observed SEP intensities for the fast and wide CMEs without (a) or with (b) pre-CMEs, and (c) the number of selected events (black) and percentages of HR (blue), FR (red), CR (yellow), and MR (purple) versus the number of pre-CMEs.

    图 3  不伴随II型射电暴(a)和伴随II型射电暴(b)时, SEP强度预测值与观测值关系

    Figure 3.  Predicted versus observed proton intensities for the fast and wide CMEs without (a) and with (b) type II radio bursts, respectively.

    图 4  II型射电暴无射电增强(a)和II型射电暴有射电增强(b)时, SEP强度预测值与观测值关系

    Figure 4.  Predicted versus observed proton intensities for the fast and wide CMEs without (a) and with (b) radio enhancements during the period of type II radio bursts.

    图 5  (a) 击中、误报、正确拒绝和漏报占比随II型射电暴起始频率上限阈值($ {f}_{{\mathrm{s}}{\mathrm{t}}} $)的变化; (b) HR, FR, CR, MR随起始频率下限阈值($ {f}_{{\mathrm{s}}{\mathrm{t}}} $)的变化; (c) 不同SEP事件强度阈值情况下, 击中事件数量随II型射电暴起始频率阈值条件的变化

    Figure 5.  (a) Fraction of hits, false alarms, correct rejections, and misses in all predictions versus the upper limit threshold ($ {f}_{{\mathrm{s}}{\mathrm{t}}} $) of the starting frequency of type II radio bursts; (b) similar to panel (a) but for the lower limit threshold $ {(f}_{{\mathrm{s}}{\mathrm{t}}}) $; (c) number of hit events among all the predictions in different thresholds of SEP intensity using the lower limit starting frequency threshold for type II radio bursts.

    图 6  (a) 击中、误报、正确拒绝和漏报占比随II型射电暴结束频率上限阈值($ {f}_{{\mathrm{e}}{\mathrm{d}}} $)的变化; (b) HR, FR, CR, MR随下限阈值$ ({f}_{{\mathrm{e}}{\mathrm{d}}} $)的变化; (c) 不同SEP事件强度阈值情况下, 击中事件数量随II型射电暴结束频率阈值条件的变化

    Figure 6.  (a) Fraction of hits, false alarms, correct rejections, and misses in all predictions versus the upper limit threshold ($ {f}_{{\mathrm{e}}{\mathrm{d}}} $) of the ending frequency of type II radio bursts; (b) similar to panel (a) but for the lower limit threshold $ {(f}_{{\mathrm{e}}{\mathrm{d}}}) $; (c) number of hit events among all the predictions in different thresholds of SEP intensity using the lower limit ending frequency threshold for type II radio bursts.

    图 7  不同类型的II型射电暴对模型输出结果的影响 (a) metric; (b) m-DH; (c) DH; (d) km; (e) DH-km; (f) m-DH-km

    Figure 7.  Predictions versus observations of SEP intensities for different classes of type II radio bursts: (a) metric; (b) m-DH; (c) DH; (d) km; (e) DH-km; (f) m-DH-km.

    图 8  (a)误报率FAR和(b)准确率ACC随SEP事件峰值强度阈值设定值的变化. 黑色“+”表示CME速度≥900 km/s且角宽≥60°; 红色“*”表示存在pre-CME; 橙色菱形表示存在II型射电暴; 绿色正方形表示伴随DH-km或m-DH-km波段的II型射电暴, 即IP II型射电暴; 蓝色正方形表示伴随m-DH-km波段的II型射电暴; 紫色三角形表示伴随的II型射电暴存在射电增强

    Figure 8.  (a) False alarm ratio versus threshold of SEP peak intensity (0 is a perfect score), for different CME selections based on their associations. The curves are for CME with speed ≥ 900 km/s and angular width ≥ 60° (black crosses), pre-CME required (red asterisks), type II radio bursts required (orange diamonds), IP type II radio bursts (DH-km or m-DH-km) required (green squares), m-DH-km type II radio bursts required (blue squares); radio enhancement in type II radio bursts (purple triangles). (b) The accuracy (fraction of correct predictions) versus threshold (perfect score = 1).

    图 9  (a)偏差BIAS和(b)命中率POD随SEP强度阈值变化

    Figure 9.  (a) Frequency bias (BIAS) and (b) probability of detection (POD) versus threshold of solar energetic particle peak intensity (Bias: perfect score = 1, POD: perfect score = 1).

    图 10  (a)报空率POFD和(b) HK评分随SEP峰值强度阈值变化

    Figure 10.  (a) Probability of false detection (POFD) and (b) Hanssen-Kuipers Discriminant (HK) versus threshold of solar energetic particle peak intensity (POFD: perfect score = 0, HK: perfect score = 1).

    表 1  不同SEP事件强度阈值情况下有/无II型射电暴伴随的SEP事件误报对比

    Table 1.  False alarms fraction of SEP predictions for CMEs with/without type II radio bursts at different SEP intensity thresholds.

    强度阈值/
    (pfu⋅MeV–1)
    无II型射电暴(188)有II型射电暴(317)
    $ {10}^{-2} $68.1%42.0%
    $ {10}^{-3} $71.8%32.8%
    $ {10}^{-4} $80.9%36.6%
    DownLoad: CSV

    表 2  不同类型II型射电暴条件下的模型输出结果

    Table 2.  Predicted results of SEPs associated with different classes of type II radio bursts.

    II型射电
    暴类型
    事件数量数量
    占比/%
    误报
    占比/%
    击中
    占比/%
    metric61.983.30
    DH3912.356.412.8
    km61.95033.3
    m-DH3210.143.825.0
    DH-km10733.841.133.6
    m-DH-km12740.135.448.0
    DownLoad: CSV

    表 3  当SEP阈值强度选为0.01 pfu/MeV时的模型输出结果和评价指标

    Table 3.  Example of skill scores for SEP intensity threshold = 0.01 pfu/MeV.

    条件totalHitsFACrMissesFARPODBIASPOFDHKACC
    完美得分011011
    CME速度≥900 km/s, 角宽≥60°(对照组)50511926111690.690.932.970.690.240.47
    无pre-CME906631920.910.758.630.77-0.020.28
    有pre-CME4151131989770.640.942.590.670.270.51
    无II型射电暴18871285300.951.0019.290.710.290.32
    有II型射电暴3171121336390.540.932.020.680.250.55
    无射电增强18146933840.670.922.780.710.210.46
    有射电增强13666402550.380.931.490.620.310.67
    $ {f}_{{\mathrm{s}}{\mathrm{t}}} $<140 MHz279991185570.540.932.050.680.250.55
    $ {f}_{{\mathrm{s}}{\mathrm{t}}} $≥140 MHz381315820.540.871.870.650.210.55
    $ {f}_{{\mathrm{e}}{\mathrm{d}}} $ < 0.1 MHz452217420.440.921.630.810.110.58
    $ {f}_{{\mathrm{e}}{\mathrm{d}}} $ ≥ 0.1 MHz272901165970.560.932.080.660.270.55
    m-DH-km II型射电暴12761451830.420.951.660.710.240.62
    DH-km II型射电暴10736442250.550.881.950.660.220.54
    m-DH-km + DH-km (行星际II型射电暴)23497894080.480.921.770.690.230.59
    DownLoad: CSV
    Baidu
  • [1]

    王劲松, 吕建永 2010 空间天气学 第1版 (北京: 气象出版社) 第16—31页

    Wang J S, Lü J Y 2010 Space Weather Science (1st Ed.) (Beijing: Meteorological Press) pp16–31

    [2]

    Kahler S W 2001 J. Geophys. Res. 106 20947Google Scholar

    [3]

    Reams D V 1999 Space. Sci. Rev. 90 413Google Scholar

    [4]

    Cliver E W, Kahler S W 2004 Astrophys. J. 605 902Google Scholar

    [5]

    Kahler S W 1992 Annu. Rev. Astron. Astrophys. 30 113Google Scholar

    [6]

    Gopalswamy N, Yashiro S, Krucker S, Stenborg G, Howard R A 2004 J. Geophys. Res. 109 12Google Scholar

    [7]

    Ding L G, Jiang Y, Zhao L, Li G 2013 Astrophys. J. 763 30Google Scholar

    [8]

    Cane H V, Von Rosenvinge T T, Cohen C M S, Mewaldt R A 2003 Geophys. Res. Lett. 30 12Google Scholar

    [9]

    Cane H V, Mewaldt R A, Cohen C M S, Von Rosenvinge T T 2006 J. Geophys. Res. 111 90Google Scholar

    [10]

    Le G M, Zhang X F 2017 Rev. Astron. Astrophys. 17 123Google Scholar

    [11]

    Le G M, Li C, Zhang X F 2017 Rev. Astron. Astrophys. 17 73Google Scholar

    [12]

    Wang Y, Lyu D, Wu X H, Qin G 2022 Astrophys. J. 940 67Google Scholar

    [13]

    Stewart R T, McCabe M K, Koomen M J, Hansen R T, Dulk G A 1974 Sol. Phys. 36 203Google Scholar

    [14]

    Hundhausen A J, Holzer T E, Low B C 1987 J. Geophys. Res. 92 0148Google Scholar

    [15]

    Vršnak B, Lulić S 2000 Sol. Phys. 196 181Google Scholar

    [16]

    Vršnak B, Cliver E 2008 Sol. Phys. 253 215Google Scholar

    [17]

    Kahler S W 1982 J. Geophys. Res. 87 2439Google Scholar

    [18]

    Cane H V, Erickson W C, Prestage N P 2002 J. Geophys. Res. 107 1315Google Scholar

    [19]

    Wild J, McCready L 1950 Aust. J. Sci. Res. Ser. A: Phys. Sci. 3 387

    [20]

    Cane H V, Stone R G, Fainberg J, Stewart R T, Steinberg J L, Hoang S 1981 Geophys. Res. Lett. 8 1285Google Scholar

    [21]

    Prakash O, Umapathy S, Shanmugaraju A, Vršnak B 2009 Sol. Phys. 258 105Google Scholar

    [22]

    Kahler S W 1996 Amer. Inst. Phys. 374 61

    [23]

    Gopalswamy N, Aguilar-Rodriguez E, Yashiro S, Nunes S, Kaiser M L, Howard R A 2005 J. Geophys. Res. 110 07Google Scholar

    [24]

    Winter L M, Ledbetter K 2015 Astrophys. J. 809 105Google Scholar

    [25]

    Kahler S W, Ling A G, Gopalswamy N 2019 Sol. Phys. 294 13Google Scholar

    [26]

    朱聪, 丁留贯, 周坤论, 钱天麒 2021 70 099601Google Scholar

    Zhu C, Ding L G, Zhou K L, Qian T Q 2021 Acta Phys. Sin. 70 099601Google Scholar

    [27]

    Marqué C, Posner A, Klein K L 2006 Astrophys. J. 642 1222Google Scholar

    [28]

    Gopalswamy N, Yashiro S, Akiyama S, Mäkelä P, Xie H, Kaiser M, Howard R, Bougeret J 2008 Ann. Geophys. 26 3033Google Scholar

    [29]

    Kahler S W, Reames D V, Burkepile J T 2000 High Energy Solar Physics- Anticipating Hessi 206 468

    [30]

    Shen C, Li G, Kong X, Hu J, Sun X D, Ding L, Chen Y, Wang Y M, Xia L 2013 Astrophys. J. 763 2Google Scholar

    [31]

    Ding L G, Li G, Dong L H, Jiang Y, Jian Y, Gu B 2014 J. Geophys. Res. 119 1463Google Scholar

    [32]

    Gopalswamy N, Yashiro S, Kaiser M L, Howard R A, Bougeret J L 2001 Astrophys. J. 548 L91Google Scholar

    [33]

    Ding L G, Wang Z W, Feng L, Li G, Jiang Y 2019 Res. Astron. Astrophys. 19 001Google Scholar

    [34]

    周坤论, 丁留贯, 钱天麒, 朱聪, 王智伟, 封莉 2020 69 169601Google Scholar

    Zhou K L, Ding L G, Qian T Q, Zhu C, Wang Z W, Feng L 2020 Acta Phys. Sin. 69 169601Google Scholar

    [35]

    Posner A 2007 Space Weather 5 05001Google Scholar

    [36]

    Richardson I G, Mays M L, Thompson B J 2018 Space Weather 16 1862Google Scholar

    [37]

    Falconer D, Barghouty A F, Khazanov I, Moore R 2011 Space Weather 9 04003Google Scholar

    [38]

    Papaioannou A, Anastasiadis A, Kouloumvakos A, Paassilta M, Vainio R, Valtonen E, Belov A V, Eroshenko E, Abunina M, Abunin A 2018 Sol. Phys. 293 1Google Scholar

    [39]

    Laurenza M, Cliver E W, Hewitt J, Storini M, Ling A G, Balch C C, Kaiser M L 2009 Space Weather 7 4Google Scholar

    [40]

    Balch C C 1999 Radiat. Meas. 30 231Google Scholar

    [41]

    Bruno A, Richardson I G 2021 Sol. Phys. 296 36Google Scholar

    [42]

    Garcia H A 2004 Space Weather 2 02002Google Scholar

    [43]

    Huang X, Wang H N, Li L P 2012 Res. Astron. Astrophys. 12 313Google Scholar

    [44]

    Núñez M 2011 Space Weather 9 07003Google Scholar

    [45]

    Núñez M 2015 Space Weather 13 727Google Scholar

    [46]

    Núñez M, Santiago P, Malandraki O 2017 Space Weather 15 861Google Scholar

    [47]

    Núñez M 2018 J. Space Weather Space Clim. 8 A36Google Scholar

    [48]

    Richardson L G, von Rosenvinge T T, Cane H V, Christian E R, Cohen C M S, Labrador A W, Leske R A, Mewaldt R A, Wiedenbeck M E, Stone E C 2014 Sol. Phys. 289 3059Google Scholar

    [49]

    Torres J, Zhao L, Chan P K, Zhang M 2022 Space Weather 20 002797Google Scholar

    [50]

    王智伟, 丁留贯, 周坤论, 乐贵明 2018 地球 61 3515Google Scholar

    Wang Z W, Ding L G, Zhou K L, Le G M 2018 Chin. J. Geophys. 61 3515Google Scholar

    [51]

    Hanssen A W, Kuipers W J A 1965 Koninklijk Ned. Meteor. Instit. 81 2

  • [1] Xing Yang-Guang, Peng Ji-Long, Duan Zi-Wen, Yan Lei, Li Lin, Liu Yue. Tomographic imaging for solar extreme ultraviolet He II 30.4 nm and spectral data inversion. Acta Physica Sinica, 2022, 71(15): 159501. doi: 10.7498/aps.71.20220084
    [2] Zhu Cong, Ding Liu-Guan, Zhou Kun-Lun, Qian Tian-Qi. Statistical analysis of characteristics of classified type II radio bursts and their associated solar energetic particle events. Acta Physica Sinica, 2021, 70(9): 099601. doi: 10.7498/aps.70.20201800
    [3] Zhou Kun-Lun, Ding Liu-Guan, Qian Tian-Qi, Zhu Cong, Wang Zhi-Wei, Feng Li. Statistical analysis of the relationship between type II radio enhancement and solar energetic particle event. Acta Physica Sinica, 2020, 69(16): 169601. doi: 10.7498/aps.69.20200041
    [4] Huo Zhi-Sheng, Pu Hong-Bin, Li Wei-Qin. Charging effect of polymer thin film under irradiation of high-energy transmission electron beam. Acta Physica Sinica, 2019, 68(23): 230201. doi: 10.7498/aps.68.20191112
    [5] Zhou Kun-Lun, Ding Liu-Guan, Wang Zhi-Wei, Feng Li. Statistical analysis of shock properties driven by coronal mass ejections based on observations of type II radio bursts. Acta Physica Sinica, 2019, 68(13): 139601. doi: 10.7498/aps.68.20190223
    [6] Ni Su-Lan, Gu Bin, Han Zhi-Yi. Interplanetary coronal mass ejection induced forbush decrease event:a simulation study with one-dimensional stochastic differential method. Acta Physica Sinica, 2017, 66(13): 139601. doi: 10.7498/aps.66.139601
    [7] Hu Shuai, Gao Tai-Chang, Li Hao, Cheng Tian-Ji, Liu Lei, Huang Wei, Jiang Shi-Yang. Atmospheric polarization pattern simulation for small solar elevation angles and the analysis of atmospheric effect. Acta Physica Sinica, 2016, 65(1): 014203. doi: 10.7498/aps.65.014203
    [8] Zhou Shuang, Feng Yong, Wu Wen-Yuan. Chaos and fractal properties of solar activity phenomena at the high and low latitudes. Acta Physica Sinica, 2015, 64(24): 249601. doi: 10.7498/aps.64.249601
    [9] Chen Hai-Jun, Zhang Yao-Wen. Stabilization of matter-wave solitons in Bessel optical lattice by spatial modulation of the nonlinearity. Acta Physica Sinica, 2014, 63(22): 220303. doi: 10.7498/aps.63.220303
    [10] Lu Wen, Yan Wei, Ai Wei-Hua, Shi Jian-Kang. Antenna cross-polarization correction for spaceborne polarimetric microwave correlation radiometer (II): Correction experiment. Acta Physica Sinica, 2013, 62(7): 078403. doi: 10.7498/aps.62.078403
    [11] Hao Da-Peng, Tang Gang, Xia Hui, Han Kui, Xun Zhi-Peng. Effects of shadowing on the scaling behavior of the ballistic deposition model. Acta Physica Sinica, 2012, 61(2): 028102. doi: 10.7498/aps.61.028102
    [12] Ouyang Jian-Ming, Ma Yan-Yun, Shao Fu-Qiu, Zou De-Bin. The effect of energetic electron impact ionization on radiation ionization process of high-altitude nuclear explosion. Acta Physica Sinica, 2012, 61(21): 212802. doi: 10.7498/aps.61.212802
    [13] Hao Da-Peng, Tang Gang, Xia Hui, Han Kui, Xun Zhi-Peng. Finite size effect of the ballistic depositionmodel with shadowing. Acta Physica Sinica, 2011, 60(3): 038102. doi: 10.7498/aps.60.038102
    [14] Ze Ren-De, Yang Tian-Li, Xiong Zong-Hua, Hao Fan-Hua, Yang Chao-Wen. 178Hfm2 isomer prepared by the bombardment of energetic α particles on metallic Yb foil. Acta Physica Sinica, 2010, 59(12): 8465-8470. doi: 10.7498/aps.59.8465
    [15] Xiao Zhong-Yin, Wang Ting-Yun, Luo Wen-Yun, Wang Zi-Hua. Mechanism of E′ center formed by irradiation with high energy particles in silica glasses. Acta Physica Sinica, 2008, 57(4): 2273-2277. doi: 10.7498/aps.57.2273
    [16] Wang Jing, Feng Xue-Shang. Classified prediction of geomagnetic disturbance caused by coronal mass ejection. Acta Physica Sinica, 2007, 56(4): 2466-2474. doi: 10.7498/aps.56.2466
    [17] CHEN YAN-PING, R. J. HASTIE, KE FU-JIU, CAI SHI-DONG, L. CHEN. ENERGETIC TRAPPED PARTICLE STABILIZING EFFECT OF INTERNAL KINK MODE. Acta Physica Sinica, 1988, 37(4): 546-556. doi: 10.7498/aps.37.546
    [18] . Acta Physica Sinica, 1975, 24(2): 145-150. doi: 10.7498/aps.24.145
    [19] LI ZHENG-WU. INJECTION AND ACCUMULATION OF HIGH ENERGY PARTICLES IN A MAGNETIC MIRROR SYSTEM. Acta Physica Sinica, 1962, 18(11): 586-593. doi: 10.7498/aps.18.586
    [20] WANG AO, LI HO-NIAN, CHEN ER-CHIH, HSIAO CINEN. THE DIRECT PRODUCTION OF ELECTRON PAIRS BY HIGH ENERGY CHARGED PARTICLES. Acta Physica Sinica, 1961, 17(6): 263-272. doi: 10.7498/aps.17.263
Metrics
  • Abstract views:  1557
  • PDF Downloads:  43
  • Cited By: 0
Publishing process
  • Received Date:  26 November 2023
  • Accepted Date:  19 January 2024
  • Available Online:  23 January 2024
  • Published Online:  05 April 2024

/

返回文章
返回
Baidu
map